Skip to main content

Advertisement

Log in

Design, synthesis and antitumor activity evaluation of 5-cyano-2,4,6-substituted pyrimidine derivatives containing acrylamide group

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of novel 5-cyano-2,4,6-substituted pyrimidine derivatives containing acrylamide group were designed, synthesized, and evaluated for their antitumor activity against four human cancer cell lines (MGC-803, PC-3, A549, and H1975) using the MTT assay. Among them, compound 20y exhibited the most potent cytotoxicity against PC-3 cells (IC50 = 2.75 ± 0.08 μM). Notably, compound 20y significantly inhibited the colony formation, migration, and invasion of PC-3 cells. Furthermore, compound 20y induced S-phase cell cycle arrest and apoptosis in PC-3 cells. These findings indicate that compound 20y might serve as a valuable lead compound for developing antitumor agents targeting prostate cancer cells.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shi Z-D, Pang K, Wu Z-X, Dong Y, Hao L, Qin J-X, et al. Tumor cell plasticity in targeted therapy-induced resistance: mechanisms and new strategies. Signal Transduct Target Ther. 2023;8:113. https://doi.org/10.1038/s41392-023-01383-x

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhang L, Ye B, Chen Z, Chen Z-S. Progress in the studies on the molecular mechanisms associated with multidrug resistance in cancers. Acta Pharm Sin B. 2023;13:982–97. https://doi.org/10.1016/j.apsb.2022.10.002

    Article  CAS  PubMed  Google Scholar 

  3. Marinescu M. Biginelli reaction mediated synthesis of antimicrobial pyrimidine derivatives and their therapeutic properties. Molecules. 2021;26:6022 https://doi.org/10.3390/molecules26196022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kappe CO. Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Acc Chem Res. 2000;33:879–88. https://doi.org/10.1021/ar000048h

    Article  CAS  PubMed  Google Scholar 

  5. Tan L, Wu C, Zhang J, Yu Q, Wang X, Zhang L, et al. Design, synthesis, and biological evaluation of heterocyclic-fused pyrimidine chemotypes guided by x-ray crystal structure with potential antitumor and anti-multidrug resistance efficacy targeting the colchicine binding site. J Medicinal Chem. 2023;66:3588–620. https://doi.org/10.1021/acs.jmedchem.2c02115

    Article  CAS  Google Scholar 

  6. Tian J, Zhang D, Kurbatov V, Wang Q, Wang Y, Fang D, et al. 5-Fluorouracil efficacy requires anti-tumor immunity triggered by cancer-cell-intrinsic STING. Embo J. 2021;40:e106065. https://doi.org/10.15252/embj.2020106065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vala RM, Sharma MG, Patel DM, Puerta A, Padrón JM, Ramkumar V, et al. Synthesis and in vitro study of antiproliferative benzyloxy dihydropyrimidinones. Arch Pharm. 2021;354:e2000466. https://doi.org/10.1002/ardp.202000466

    Article  CAS  Google Scholar 

  8. Prasad T, Mahapatra A, Sharma T, Sahoo CR, Padhy RN. Dihydropyrimidinones as potent anticancer agents: Insight into the structure-activity relationship. Arch Pharm. 2023:e2200664. https://doi.org/10.1002/ardp.202200664.

  9. Lachhab S, El Mansouri AE, Mehdi A, Dennemont I, Neyts J, Jochmans D, et al. Synthesis of new 3-acetyl-1,3,4-oxadiazolines combined with pyrimidines as antileishmanial and antiviral agents. Mol Divers. 2022:1–13. https://doi.org/10.1007/s11030-022-10548-9.

  10. Rane JS, Pandey P, Chatterjee A, Khan R, Kumar A, Prakash A, et al. Targeting virus-host interaction by novel pyrimidine derivative: an in silico approach towards discovery of potential drug against COVID-19. J Biomol Struct Dyn. 2021;39:5768–78. https://doi.org/10.1080/07391102.2020.1794969

    Article  CAS  PubMed  Google Scholar 

  11. Sharma P, Rane N, Gurram VK. Synthesis and QSAR studies of pyrimido[4,5-d]pyrimidine-2,5-dione derivatives as potential antimicrobial agents. Bioorg Med Chem Lett. 2004;14:4185–90. https://doi.org/10.1016/j.bmcl.2004.06.014

    Article  CAS  PubMed  Google Scholar 

  12. Prakash O, Bhardwaj V, Kumar R, Tyagi P, Aneja KR. Organoiodine (III) mediated synthesis of 3-aryl/hetryl-5,7-dimethyl-1,2,4-triazolo[4,3-a]pyrimidines as antibacterial agents. Eur J Med Chem. 2004;39:1073–7. https://doi.org/10.1016/j.ejmech.2004.06.011

    Article  CAS  PubMed  Google Scholar 

  13. Sharma MG, Vala RM, Rajani DP, Ramkumar V, Gardas RL, Banerjee S, et al. Crystal structure, antibacterial and antifungal evaluation of 5-bromothiophene based 3,4-dihydropyrimidin-2-(1H)-(thi)ones. Phosphorus, Sulfur, Silicon Relat Elem. 2023;198:145–53. https://doi.org/10.1080/10426507.2022.2121397

    Article  CAS  Google Scholar 

  14. Agarwal N, Raghuwanshi SK, Upadhyay DN, Shukla PK, Ram VJ. Suitably functionalised pyrimidines as potential antimycotic agents. Bioorg Med Chem Lett. 2000;10:703–6. https://doi.org/10.1016/s0960-894x(00)00091-3

    Article  CAS  PubMed  Google Scholar 

  15. Shoichet BK, Stroud RM, Santi DV, Kuntz ID, Perry KM. Structure-based discovery of inhibitors of thymidylate synthase. Science. 1993;259:1445–50. https://doi.org/10.1126/science.8451640

    Article  CAS  PubMed  Google Scholar 

  16. Alam O, Khan SA, Siddiqui N, Ahsan W, Verma SP, Gilani SJ. Antihypertensive activity of newer 1,4-dihydro-5-pyrimidine carboxamides: synthesis and pharmacological evaluation. Eur J Med Chem. 2010;45:5113–9. https://doi.org/10.1016/j.ejmech.2010.08.022

    Article  CAS  PubMed  Google Scholar 

  17. Kumar V, Mahdi F, Khanna AK, Singh R, Chander R, Saxena JK, et al. Antidyslipidemic and antioxidant activities of hibiscus rosa sinensis root extract in alloxan induced diabetic rats. Indian J Clin Biochem. 2013;28:46–50. https://doi.org/10.1007/s12291-012-0223-x

    Article  PubMed  Google Scholar 

  18. Spasov AA, Babkov DA, Sysoeva VA, Litvinov RA, Shamshina DD, Ulomsky EN, et al. 6-Nitroazolo[1,5-a]pyrimidin-7(4H)-ones as antidiabetic agents. Arch Pharm. 2017;350. https://doi.org/10.1002/ardp.201700226.

  19. Rahaman SA, Pasad YR, Kumar P, Kumar B. Synthesis and anti-histaminic activity of some novel pyrimidines. Saudi Pharm J. 2009;17. https://doi.org/10.1016/j.jsps.2009.08.001.

  20. Finger V, Kufa M, Soukup O, Castagnolo D, Roh J, Korabecny J. Pyrimidine derivatives with antitubercular activity. Eur J Med Chem. 2023;246:114946. https://doi.org/10.1016/j.ejmech.2022.114946

    Article  CAS  PubMed  Google Scholar 

  21. Xu C, Shao T, Shao S, Jin G. High activity, high selectivity and high biocompatibility BODIPY-pyrimidine derivatives for fluorescence target recognition and evaluation of inhibitory activity. Bioorg Chem. 2021;114:105121. https://doi.org/10.1016/j.bioorg.2021.105121

    Article  CAS  PubMed  Google Scholar 

  22. Guo W, Xing Y, Zhang Q, Xie J, Huang D, Gu H, et al. Synthesis and biological evaluation of B-cell lymphoma 6 inhibitors of N-phenyl-4-pyrimidinamine derivatives bearing potent activities against tumor growth. J Med Chem. 2020;63:676–95. https://doi.org/10.1021/acs.jmedchem.9b01618

    Article  CAS  PubMed  Google Scholar 

  23. Metterle L, Nelson C, Patel N. Intralesional 5-fluorouracil (FU) as a treatment for nonmelanoma skin cancer (NMSC): a review. J Am Acad Dermatol. 2016;74:552–7. https://doi.org/10.1016/j.jaad.2015.09.040

    Article  CAS  PubMed  Google Scholar 

  24. David C, Naureen S, Sheela R, Timothy I, Marianne N, Fareeda C, et al. Capecitabine and oxaliplatin for advanced esophagogastric cancer. N Engl J Med. 2008;358. https://doi.org/10.1056/nejmoa073149.

  25. Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362:1273–81. https://doi.org/10.1056/NEJMoa0908721

    Article  CAS  PubMed  Google Scholar 

  26. Kelly C, Bhuva N, Harrison M, Buckley A, Saunders M. Use of raltitrexed as an alternative to 5-fluorouracil and capecitabine in cancer patients with cardiac history. Eur J Cancer. 2013;49:2303–10. https://doi.org/10.1016/j.ejca.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  27. Morihiro K, Ishinabe T, Takatsu M, Osumi H, Osawa T, Okamoto A. Floxuridine oligomers activated under hypoxic environment. J Am Chem Soc. 2021;143:3340–7. https://doi.org/10.1021/jacs.0c10732

    Article  CAS  PubMed  Google Scholar 

  28. Dhillon S. Decitabine/cedazuridine: first approval. Drugs. 2020;80:1373–8. https://doi.org/10.1007/s40265-020-01389-7

    Article  CAS  PubMed  Google Scholar 

  29. Honglin D, Chao G, Xiaojie S, Yutong Z, Zhengjie W, Limin L, et al. Design, synthesis, and antitumor activity evaluation of 2,4,6-trisubstituted quinazoline derivatives containing acrylamide. Russ J Bioorg Chem. 2022;48:1089–100. https://doi.org/10.1134/S1068162022050090

    Article  CAS  Google Scholar 

  30. HongWei J, HuaLi Y, ZhiLing X, MingHui D, Tong W, Yang L, et al. Design, synthesis and antitumor activity evaluation of novel indole acrylamide derivatives as IMPDH inhibitors. Bioorgan Chem. 2022;129. https://doi.org/10.1016/j.bioorg.2022.106213.

  31. Hu X, Tang S, Yang F, Zheng P, Xu S, Pan Q, et al. Design, synthesis, and antitumor activity of olmutinib derivatives containing acrylamide moiety. Molecules. 2021;26:3041. https://doi.org/10.3390/molecules26103041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Enzalutamide in Castration-Resistant Prostate Cancer. N. Engl J Med. 2018;379:1380-1. https://doi.org/10.1056/NEJMc1810065.

  33. Apperley JF, Byrne JL, Smith G, Claudiani S, Viqueira A, Ferdinand R, et al. The real world use of bosutinib in patients with chronic myeloid leukaemia. Blood. 2016;128:5435. https://doi.org/10.1182/blood.V128.22.5435.5435

    Article  Google Scholar 

  34. Pingxian L, Dongmei F, Wenliang Q, Xinlian H, Lidan Z, Yunhan J, et al. SAR study and molecular mechanism investigation of novel naphthoquinone-furan-2-cyanoacryloyl hybrids with antitumor activity. Pharmaceutics. 2022;14. https://doi.org/10.3390/pharmaceutics14102104.

  35. Lian-Fang Y, Yajing X, Jie-Xin X, Jia X, Wei G, Jiuqing X, et al. Synthesis of cyanoenone-modified diterpenoid analogs as novel Bmi-1-mediated antitumor agents. ACS Med Chem Lett. 2018;9. https://doi.org/10.1021/acsmedchemlett.8b00345.

  36. Ester K, Supek F, Majsec K, Marjanović M, Lembo D, Donalisio M, et al. Putative mechanisms of antitumor activity of cyano-substituted heteroaryles in HeLa cells. Investig N Drugs. 2012;30:450–67. https://doi.org/10.1007/s10637-010-9571-7

    Article  CAS  Google Scholar 

  37. Wang H, Zhang L, Zheng X, Zhang X, Si X, Wang M. The ability of avitinib to penetrate the blood brain barrier and its control of intra-/extra- cranial disease in patients of non-small cell lung cancer (NSCLC) harboring EGFR T790M mutation. J Clin Oncol. 2017;35:e20613-e. https://doi.org/10.1200/JCO.2017.35.15_suppl.e20613

    Article  Google Scholar 

  38. Elias R, Pudusseri A, Akinboro O, White PS, Sarosiek S. Ibrutinib: a post-marketing safety analysis. J Clin Oncol. 2018;36:e19559-e. https://doi.org/10.1200/JCO.2018.36.15_suppl.e19559

    Article  Google Scholar 

  39. Fleisher TA. Apoptosis. Ann Allergy, Asthma Immunol. 1997;78:245–50. https://doi.org/10.1016/S1081-1206(10)63176-6

    Article  CAS  PubMed  Google Scholar 

  40. Li S, Wu B, Zheng X, Wang C, Zhao J, Sun H, et al. Synthesis and biological activity of imidazole group-substituted arylaminopyrimidines (IAAPs) as potent BTK inhibitors against B-cell lymphoma and AML. Bioorg Chem. 2021;106:104385. https://doi.org/10.1016/j.bioorg.2020.104385

    Article  CAS  PubMed  Google Scholar 

  41. Jadhav CK, Nipate AS, Chate AV, Songire VD, Patil AP, Gill CH. Efficient rapid access to Biginelli for the multicomponent synthesis of 1,2,3,4-tetrahydropyrimidines in room-temperature diisopropyl ethyl ammonium acetate. ACS Omega. 2019;4:22313–24. https://doi.org/10.1021/acsomega.9b02286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mao R, Shao J, Zhu K, Zhang Y, Ding H, Zhang C, et al. Potent, selective, and cell active protein arginine methyltransferase 5 (PRMT5) inhibitor developed by structure-based virtual screening and hit optimization. J Med Chem. 2017;60:6289–304. https://doi.org/10.1021/acs.jmedchem.7b00587

    Article  CAS  PubMed  Google Scholar 

  43. Said MM, Taher AT, El-Nassan HB, El-Khouly EA. Synthesis of novel S-acyl and S-alkylpyrimidinone derivatives as potential cytotoxic agents. Res Chem Intermed. 2016;42:6643–62. https://doi.org/10.1007/s11164-016-2487-x

    Article  CAS  Google Scholar 

  44. El-Hameed RHA, Fatahala SS, Sayed AI. Synthesis of some novel benzimidazole derivatives as anticancer agent and evaluation for CDK2 inhibition activity. Med Chem. 2022;18:238–48. https://doi.org/10.2174/1573406417666210304100830

    Article  CAS  PubMed  Google Scholar 

  45. Zhu Y, Zheng X, Wang C, Sun X, Sun H, Ma T, et al. Synthesis and biological activity of thieno[3,2-d]pyrimidines as potent JAK3 inhibitors for the treatment of idiopathic pulmonary fibrosis. Bioorg Med Chem. 2020;28:115254. https://doi.org/10.1016/j.bmc.2019.115254

    Article  CAS  PubMed  Google Scholar 

  46. Rodriguez F, Saffon N, Sammartino JC, Degiacomi G, Pasca MR, Lherbet C. First triclosan-based macrocyclic inhibitors of InhA enzyme. Bioorg Chem. 2020;95:103498. https://doi.org/10.1016/j.bioorg.2019.103498

    Article  CAS  PubMed  Google Scholar 

  47. Sun B, Liu X, Zheng X, Wang C, Meng Q, Sun H, et al. Novel pyrimidines as multitarget protein tyrosine kinase inhibitors for the treatment of idiopathic pulmonary fibrosis (IPF). ChemMedChem. 2020;15:182–7. https://doi.org/10.1002/cmdc.201900606.

    Article  CAS  PubMed  Google Scholar 

  48. Mologni L, Dalla Via M, Chilin A, Palumbo M, Marzaro G. Discovery of (wt) RET and (V804M) RET inhibitors: from hit to lead. ChemMedChem. 2017;12:1390–8. https://doi.org/10.1002/cmdc.201700243

    Article  CAS  PubMed  Google Scholar 

  49. Ge Y, Yang H, Wang C, Meng Q, Li L, Sun H, et al. Design and synthesis of phosphoryl-substituted diphenylpyrimidines (Pho-DPPYs) as potent Bruton’s tyrosine kinase (BTK) inhibitors: targeted treatment of B lymphoblastic leukemia cell lines. Bioorg Med Chem. 2017;25:765–72. https://doi.org/10.1016/j.bmc.2016.11.054

    Article  CAS  PubMed  Google Scholar 

  50. Song Z, Jin Y, Ge Y, Wang C, Zhang J, Tang Z, et al. Synthesis and biological evaluation of azole-diphenylpyrimidine derivatives (AzDPPYs) as potent T790M mutant form of epidermal growth factor receptor inhibitors. Bioorg Med Chem. 2016;24:5505–12. https://doi.org/10.1016/j.bmc.2016.09.001

    Article  CAS  PubMed  Google Scholar 

  51. Fargualy AM, Habib NS, Ismail KA, Hassan AM, Sarg MT. Synthesis, biological evaluation and molecular docking studies of some pyrimidine derivatives. Eur J Med Chem. 2013;66:276–95. https://doi.org/10.1016/j.ejmech.2013.05.028

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. U21A20416).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Ke, Hongmin Liu or Qiurong Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, F., Chi, L., Wang, H. et al. Design, synthesis and antitumor activity evaluation of 5-cyano-2,4,6-substituted pyrimidine derivatives containing acrylamide group. Med Chem Res 32, 2116–2124 (2023). https://doi.org/10.1007/s00044-023-03099-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03099-7

Keywords

Navigation