Skip to main content

Advertisement

Log in

Lewis base-catalyzed synthesis of highly functionalized spirooxindole-pyranopyrazoles and their in vitro anticancer studies

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Herein, the one-step, multi-component reaction (MCR) of a series of spirooxindole-pyranopyrazole derivatives (5a-g), via a Knoevenagel condensation and Michael addition cascade, under mild and green reaction conditions, is reported. The newly synthesized derivatives were screened for in vitro anti-cancer activity against 60 human cancer cell lines at the National Cancer Institute (NCI), USA. We found that compounds 5c, 5d, and 5g showed good activity against the HOP-92 (lung cancer), UO-31 (renal cancer), KM-12, SW-620 (colon cancer), and HS578T (breast cancer) cell lines. Compound 5c showed 43.19 and 21.18% growth inhibition at 10 μM for HOP-92 and UO-31 cell lines, respectively, while compound 5g showed 82.02% growth inhibition for the KM12 cell line at the same concentration. Therefore, the compound 5g could be further derivatized as a futuristic lead molecule for colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Global Health Estimates n.d. https://www.who.int/data/global-health-estimates (accessed July 16, 2022).

  2. Hafeez BB, Ganju A, Sikander M, Kashyap VK, Hafeez ZB, Chauhan N, et al. Ormeloxifene suppresses prostate tumor growth and metastatic phenotypes via inhibition of oncogenic β-catenin signaling and EMT progression. Mol Cancer Ther. 2017;16:2267–80. https://doi.org/10.1158/1535-7163.MCT-17-0157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Karaki F, Umemoto S, Ashizawa K, Oki T, Sato N, Ogino T, et al. A new lead identification strategy: Screening an sp3-rich and lead-like compound library composed of 7-Azanorbornane derivatives. ChemMedChem. 2019;14:1840–8. https://doi.org/10.1002/CMDC.201900398

    Article  CAS  PubMed  Google Scholar 

  4. Schömel N, Gruber L, Alexopoulos SJ, Trautmann S, Olzomer EM, Byrne FL, et al. UGCG overexpression leads to increased glycolysis and increased oxidative phosphorylation of breast cancer cells. Sci Rep. 2020;10:1–13. https://doi.org/10.1038/s41598-020-65182-y

    Article  CAS  Google Scholar 

  5. Oh SR, Choe SY, Cho YJ. Clinical application of serum anti-Müllerian hormone in women. Clin Exp Reprod Med. 2019;46:50–9. https://doi.org/10.5653/cerm.2019.46.2.50

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang Z, Zhang D, Zhou Y, Wang F, Xin A, Gao F, et al. The anti-lung cancer activity of propylene tethered dihydroartemisinin-isatin hybrids. Arab J Chem. 2022;15:103721. https://doi.org/10.1016/J.ARABJC.2022.103721

    Article  CAS  Google Scholar 

  7. Asif M, Azaz T, Tiwari B, Nasibullah M. Propagative isatin in organic synthesis of spirooxindoles through catalysis. Tetrahedron. 2023;134:133308. https://doi.org/10.1016/j.tet.2023.133308

    Article  CAS  Google Scholar 

  8. Hassan F, Azad I, Asif M, Shukla D, Husain A, Khan AR, et al. Isatin conjugates as antibacterial agents: a brief review. Med Chem. 2022;18. https://doi.org/10.2174/1573406418666220930145336

  9. Wang S, Dong G, Sheng C. Structural simplification of natural products. Chem Rev. 2019;119:4180–220. https://doi.org/10.1021/ACS.CHEMREV.8B00504/ASSET/IMAGES/MEDIUM/CR-2018-00504N_0046.GIF

    Article  CAS  PubMed  Google Scholar 

  10. Al-Rashood ST, Hamed AR, Hassan GS, Alkahtani HM, Almehizia AA, Alharbi A, et al. Antitumor properties of certain spirooxindoles towards hepatocellular carcinoma endowed with antioxidant activity. 2020;35:831–9. https://doi.org/10.1080/14756366.2020.1743281

  11. Lee MML, Chan BD, Wong WY, Leung TW, Qu Z, Huang J, et al. Synthesis and evaluation of novel anticancer compounds derived from the natural product Brevilin A. ACS Omega. 2020;5:14586–96. https://doi.org/10.1021/ACSOMEGA.0C01276/ASSET/IMAGES/LARGE/AO0C01276_0005.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hügel HM, de Silva NH, Siddiqui A, Blanch E, Lingham A. Natural spirocyclic alkaloids and polyphenols as multi target dementia leads. Bioorganic Med Chem. 2021;43:116270. https://doi.org/10.1016/j.bmc.2021.116270

    Article  CAS  Google Scholar 

  13. Singh D, Müller CP, Vicknasingam BK, Mansor SM. Social functioning of Kratom (Mitragyna speciosa) users in Malaysia. J Psychoact Drugs. 2015;47:125–31. https://doi.org/10.1080/02791072.2015.1012610

    Article  Google Scholar 

  14. Salleh WMNHW, Shakri NM, Khamis S, Setzer WN, Nadri MH. Chemical composition of three Malaysian Horsfieldia essential oils. 2020;36:1909–13. https://doi.org/10.1080/14786419.2020.1819274.

  15. Kang TH, Matsumoto K, Tohda M, Murakami Y, Takayama H, Kitajima M, et al. Pteropodine and isopteropodine positively modulate the function of rat muscarinic M(1) and 5-HT(2) receptors expressed in Xenopus oocyte. Eur J Pharmacol. 2002;444:39–45. https://doi.org/10.1016/S0014-2999(02)01608-4

    Article  CAS  PubMed  Google Scholar 

  16. Zhang J, Song M, Ao YL, Li Y, Zou XY, Xu J, et al. Alstolarines A and B, two unusual monoterpenoid indole alkaloids with an acetal moiety from Alstonia scholaris. Org Chem Front. 2020;7:3468–73. https://doi.org/10.1039/D0QO00751J

    Article  CAS  Google Scholar 

  17. Ikram M, Ali N, Jan G, Jan FG, Rahman IU, Iqbal A, et al. IAA-producing fungal endophyte Penicillium roqueforti Thom., enhances stress tolerance and nutrients uptake in wheat plants grown on heavy metal contaminated soils. PLoS One 2018;13. https://doi.org/10.1371/JOURNAL.PONE.0208150

  18. Zelante T, Iannitti RG, De Luca A, Arroyo J, Blanco N, Servillo G, et al. Sensing of mammalian IL-17A regulates fungal adaptation and virulence. Nat Commun. 2012;3:1–10. https://doi.org/10.1038/ncomms1685

    Article  CAS  Google Scholar 

  19. Jossang A, Jossang P, Bodo B, Hadi HA, Sévenet T. Horsfiline, an oxindole alkaloid from Horsfieldia superba. J Org Chem. 1991;56:6527–30. https://doi.org/10.1021/JO00023A016/ASSET/JO00023A016.FP.PNG_V03

    Article  CAS  Google Scholar 

  20. Lopes AA, Chioca B, Musquiari B, Crevelin EJ, França S, de C, et al. Unnatural spirocyclic oxindole alkaloids biosynthesis in Uncaria guianensis. Sci Rep. 2019;9:1–8. https://doi.org/10.1038/s41598-019-47706-3

    Article  CAS  Google Scholar 

  21. Kaur M, Singh M, Chadha N, Silakari O. Oxindole: A chemical prism carrying plethora of therapeutic benefits. Eur J Med Chem. 2016;123:858–94. https://doi.org/10.1016/J.EJMECH.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  22. Zhou LM, Qu RY, Yang GF. An overview of spirooxindole as a promising scaffold for novel drug discovery. Expert Opin Drug Discov. 2020;15:603–25. https://doi.org/10.1080/17460441.2020.1733526

    Article  CAS  PubMed  Google Scholar 

  23. Zhao Q, Xiong SS, Chen C, Zhu HP, Xie X, Peng C, et al. Discovery of spirooxindole-derived small-molecule compounds as novel HDAC/MDM2 dual inhibitors and investigation of their anticancer activity. Front Oncol. 2022;12:3952. https://doi.org/10.3389/FONC.2022.972372/BIBTEX

    Article  Google Scholar 

  24. Azmanova M, Soldevila-Barreda J, Bani Hani H, Lord RM, Pitto-Barry A, Picksley SM, et al. Anticancer activity of electron-deficient metal complexes against colorectal cancer in vitro models. ChemMedChem. 2019;14:1887–93. https://doi.org/10.1002/CMDC.201900528

    Article  CAS  PubMed  Google Scholar 

  25. Murali K, Sparkes HA, Rajendra Prasad KJ. Regio- and stereoselective synthesis of dispirooxindole-pyrrolocarbazole hybrids via 1,3-dipolar cycloaddition reactions: Cytotoxic activity and SAR studies. Eur J Med Chem. 2018;143:292–305. https://doi.org/10.1016/J.EJMECH.2017.11.039

    Article  CAS  PubMed  Google Scholar 

  26. Veerasamy R, Roy A, Karunakaran R, Rajak H. Structure–activity relationship analysis of benzimidazoles as emerging anti-inflammatory agents: an overview. Pharmaceuticals 2021;14. https://doi.org/10.3390/PH14070663

  27. Chauhan G, Pathak DP, Ali F, Bhutani R, Kapoor G, Khasimbi S. Advances in synthesis, derivatization and bioactivity of Isatin: A review. Curr Org Synth. 2020;18:37–74. https://doi.org/10.2174/1570179417666200924150907

    Article  CAS  Google Scholar 

  28. Talukdar R, Singh V, Mourya H, Nasibullah M, Tiwari B. Stitching Triazoles to arenes via a transition metal-free Aryne Diels-Alder/1,3-Prototropic Shift/Dehydrobromination Cascade. J Org Chem. 2021;86:12277–84. https://doi.org/10.1021/ACS.JOC.1C00562/SUPPL_FILE/JO1C00562_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  29. Azad I, Jafri A, Khan T, Akhter Y, Arshad M, Hassan F, et al. Evaluation of pyrrole-2,3-dicarboxylate derivatives: Synthesis, DFT analysis, molecular docking, virtual screening and in vitro anti-hepatic cancer study. J Mol Struct. 2019;1176:314–34. https://doi.org/10.1016/J.MOLSTRUC.2018.08.049

    Article  CAS  Google Scholar 

  30. Pal S, Khan MN, Karamthulla S, Abbas SJ, Choudhury LH. One pot four-component reaction for the efficient synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole]-3′-carboxylate derivatives. Tetrahedron Lett. 2013;54:5434–40. https://doi.org/10.1016/j.tetlet.2013.07.11.

    Article  CAS  Google Scholar 

  31. NCI NCI. NCI-60 Screening Methodology|NCI-60 Human Tumor Cell Lines Screen|Discovery & Development Services. Dev Ther Progr. 2021

  32. Lotfy G, Abdel Aziz YM, Said MM, El Ashry ESH, El Tamany ESH, Abu-Serie MM, et al. Molecular hybridization design and synthesis of novel spirooxindole-based MDM2 inhibitors endowed with BCL2 signaling attenuation; a step towards the next generation p53 activators. Bioorg Chem. 2021;117:105427. https://doi.org/10.1016/j.bioorg.2021.105427

    Article  CAS  PubMed  Google Scholar 

  33. Yang H, Lou C, Sun L, Li J, Cai Y, Wang Z, et al. AdmetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics. 2019;35:1067–9. https://doi.org/10.1093/BIOINFORMATICS/BTY707

    Article  CAS  PubMed  Google Scholar 

  34. Dhokne P, Sakla AP, Shankaraiah N. Structural insights of oxindole based kinase inhibitors as anticancer agents: Recent advances. Eur J Med Chem. 2021;216:113334. https://doi.org/10.1016/J.EJMECH.2021.113334

    Article  CAS  PubMed  Google Scholar 

  35. Ahmad P, Alvi SS, Iqbal J, Khan MS. Identification and evaluation of natural organosulfur compounds as potential dual inhibitors of α-amylase and α-glucosidase activity: an in-silico and in-vitro approach. Med Chem Res. 2021;30:2184–202. https://doi.org/10.1007/s00044-021-02799-2

    Article  CAS  Google Scholar 

  36. Deng H, Zhao L, Park K, Yan J, Sobczak K, Lakra A, et al. Topological surface currents accessed through reversible hydrogenation of the three-dimensional bulk n.d. https://doi.org/10.1038/s41467-022-29957-3.

  37. Nahas Y, Prokhorenko S, Zhang Q, Govinden V, Valanoor N, Bellaiche L. Topology and control of self-assembled domain patterns in low-dimensional ferroelectrics. Nat Commun. 2020;11:1–8. https://doi.org/10.1038/s41467-020-19519-w

    Article  CAS  Google Scholar 

  38. Galeano D, Li S, Gerstein M, Paccanaro A. Predicting the frequencies of drug side effects. Nat Commun. 2020;11:1–14. https://doi.org/10.1038/s41467-020-18305-y

    Article  CAS  Google Scholar 

  39. Greene C, Hanley N, Reschke CR, Reddy A, Mäe MA, Connolly R, et al. Microvascular stabilization via blood-brain barrier regulation prevents seizure activity. Nat Commun. 2022;13. https://doi.org/10.1038/s41467-022-29657-y.

  40. Ma XL, Chen C, Yang J. Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacol Sin. 2005;26:500–12. https://doi.org/10.1111/j.1745-7254.2005.00068.x

    Article  CAS  PubMed  Google Scholar 

  41. Leão RP, Cruz JV, da Costa GV, Cruz JN, Ferreira EFB, Silva RC, et al. Identification of new rofecoxib-based cyclooxygenase-2 inhibitors: A bioinformatics approach. Pharmaceuticals. 2020;13:1–26. https://doi.org/10.3390/ph13090209

    Article  CAS  Google Scholar 

  42. Hiles-Murison B, Lavender AP, Hackett MJ, Armstrong JJ, Nesbit M, Rawlings S, et al. Blood–brain barrier disruption and ventricular enlargement are the earliest neuropathological changes in rats with repeated sub-concussive impacts over 2 weeks. Sci Rep. 2021;11:1–12. https://doi.org/10.1038/s41598-021-88854-9

    Article  CAS  Google Scholar 

  43. Ahmed I, Leach DN, Wohlmuth H, De Voss JJ, Blanchfield JT. Caco-2 Cell Permeability of Flavonoids and Saponins from Gynostemma pentaphyllum: The Immortal Herb. ACS Omega. 2020;5:21561–9. https://doi.org/10.1021/acsomega.0c02180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Volpe DA. Variability in caco-2 and MDCK cell-based intestinal permeability assays. J Pharm Sci. 2008;97:712–25. https://doi.org/10.1002/jps.21010

    Article  CAS  PubMed  Google Scholar 

  45. Fedi A, Vitale C, Ponschin G, Ayehunie S, Fato M, Scaglione S. In vitro models replicating the human intestinal epithelium for absorption and metabolism studies: A systematic review. J Control Release. 2021;335:247–68. https://doi.org/10.1016/J.JCONREL.2021.05.028

    Article  CAS  PubMed  Google Scholar 

  46. Yamashita S, Furubayashi T, Kataoka M, Sakane T, Sezaki H, Tokuda H. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur J Pharm Sci. 2000;10:195–204. https://doi.org/10.1016/S0928-0987(00)00076-2

    Article  CAS  PubMed  Google Scholar 

  47. Lundborg M, Wennberg CL, Narangifard A, Lindahl E, Norlén L. Predicting drug permeability through skin using molecular dynamics simulation. J Control Release. 2018;283:269–79. https://doi.org/10.1016/j.jconrel.2018.05.026

    Article  CAS  PubMed  Google Scholar 

  48. Chen CP, Chen CC, Huang CW, Chang YC. Evaluating molecular properties involved in transport of small molecules in stratum corneum: A quantitative structure-activity relationship for skin permeability. Molecules. 2018;23:911. https://doi.org/10.3390/molecules23040911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Alvi SS, Ansari IA, Ahmad MK, Iqbal J, Khan MS. Lycopene amends LPS induced oxidative stress and hypertriglyceridemia via modulating PCSK-9 expression and Apo-CIII mediated lipoprotein lipase activity. Biomed Pharmacother. 2017;96:1082–93. https://doi.org/10.1016/j.biopha.2017.11.116

    Article  CAS  PubMed  Google Scholar 

  50. Roberts JA, Pea F, Lipman J. The clinical relevance of plasma protein binding changes. Clin Pharmacokinet. 2013;52:1–8. https://doi.org/10.1007/s40262-012-0018-5

    Article  CAS  PubMed  Google Scholar 

  51. Gurevich KG. Effect of blood protein concentrations on drug-dosing regimes: Practical guidance. Theor Biol Med Model. 2013;10:20. https://doi.org/10.1186/1742-4682-10-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim JE, Cho HJ, Kim JS, Shim CK, Chung SJ, Oak MH, et al. The limited intestinal absorption via paracellular pathway is responsible for the low oral bioavailability of doxorubicin. Xenobiotica. 2013;43:579–91. https://doi.org/10.3109/00498254.2012.751140

    Article  CAS  PubMed  Google Scholar 

  53. Zhao YH, Le J, Abraham MH, Hersey A, Eddershaw PJ, Luscombe CN, et al. Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure - Activity relationship (QSAR) with the Abraham descriptors. J Pharm Sci. 2001;90:749–84. https://doi.org/10.1002/jps.1031

    Article  CAS  PubMed  Google Scholar 

  54. Palanissami G, Paul SFD. RAGE and Its Ligands: Molecular Interplay Between Glycation, Inflammation, and Hallmarks of Cancer—a Review. Horm Cancer. 2018;9:295–25. https://doi.org/10.1007/s12672-018-0342-9

    Article  CAS  PubMed  Google Scholar 

  55. Nabi R, Alvi SS, Saeed M, Ahmad S, Khan MS. Glycation and HMG-CoA Reductase Inhibitors: Implication in Diabetes and Associated Complications. Curr Diabetes Rev. 2019;15:213–23. https://doi.org/10.2174/1573399814666180924113442

    Article  CAS  PubMed  Google Scholar 

  56. Nabi R, Alvi SS, Shah A, Chaturvedi CP, Iqbal D, Ahmad S, et al. Modulatory role of HMG-CoA reductase inhibitors and ezetimibe on LDL-AGEs-induced ROS generation and RAGE-associated signalling in HEK-293 Cells. Life Sci. 2019;235:116823. https://doi.org/10.1016/j.lfs.2019.116823

    Article  CAS  PubMed  Google Scholar 

  57. Nabi R, Alvi SS, Shah MS, Ahmad S, Faisal M, Alatar AA, et al. A biochemical & biophysical study on in-vitro anti-glycating potential of iridin against D-Ribose modified BSA. Arch Biochem Biophys. 2020;686:1–16. https://doi.org/10.1016/j.abb.2020.108373

    Article  CAS  Google Scholar 

  58. Alvi SS, Nabi R, Khan MS, Akhter F, Ahmad S, Khan MS. Glycyrrhizic Acid Scavenges Reactive Carbonyl Species and Attenuates Glycation-Induced Multiple Protein Modification: An in Vitro and in Silico Study. Oxid Med Cell Longev. 2021;2021:1–14. https://doi.org/10.1155/2021/7086951

    Article  CAS  Google Scholar 

  59. Nabi R, Alvi SS, Shah MS, Ahmad S, Faisal M, Alatar AA, et al. A biochemical & biophysical study on in-vitro anti-glycating potential of iridin against D-Ribose modified BSA. Arch Biochem Biophys. 2020;686:108373. https://doi.org/10.1016/j.abb.2020.108373

    Article  CAS  PubMed  Google Scholar 

  60. Wang S, Hai X, Ding X, Jin S, Xiang Y, communications PW-…, et al. Intermolecular cascaded π-conjugation channels for electron delivery powering CO2 photoreduction. NatureCom n.d.

  61. Garber DA, Adams DR, Guenthner P, Mitchell J, Kelley K, Schoofs T, et al. Durable protection against repeated penile exposures to simian-human immunodeficiency virus by broadly neutralizing antibodies. Nat Commun. 2020;11:1–9. https://doi.org/10.1038/s41467-020-16928-9

    Article  CAS  Google Scholar 

  62. Boon R, Kumar M, Tricot T, Elia I, Ordovas L, Jacobs F, et al. Amino acid levels determine metabolism and CYP450 function of hepatocytes and hepatoma cell lines. Nat Commun. 2020;11:1–16. https://doi.org/10.1038/s41467-020-15058-6.

    Article  CAS  Google Scholar 

  63. Teh LK, Bertilsson L. Pharmacogenomics of CYP2D6: Molecular genetics, interethnic differences and clinical importance. Drug Metab Pharmacokinet. 2012;27:55–67. https://doi.org/10.2133/dmpk.DMPK-11-RV-121

    Article  CAS  PubMed  Google Scholar 

  64. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138:103–41. https://doi.org/10.1016/j.pharmthera.2012.12.007

    Article  CAS  PubMed  Google Scholar 

  65. Walko CM, McLeod H. Use of CYP2D6 genotyping in practice: Tamoxifen dose adjustment. Pharmacogenomics. 2012;13:691–7. https://doi.org/10.2217/pgs.12.27

    Article  CAS  PubMed  Google Scholar 

  66. Jin Z, Wang Y, Yu XF, Tan QQ, Liang SS, Li T, et al. Structure-based virtual screening of influenza virus RNA polymerase inhibitors from natural compounds: Molecular dynamics simulation and MM-GBSA calculation. Comput Biol Chem. 2020;85:107241. https://doi.org/10.1016/J.COMPBIOLCHEM.2020.107241

    Article  CAS  PubMed  Google Scholar 

  67. Chen CW, Hsieh JC, Lin YC, Chang JH, Chen IC, Horng SF, et al. Micrometer-scale grating vertical structure OSC Ammonia Gas Sensor with a PEDOT:PSS coupling layer using the current spreading effect to achieve ppb-Regime sensing capability. ACS Appl Electron Mater. 2020;2:2514–24. https://doi.org/10.1021/ACSAELM.0C00422/SUPPL_FILE/EL0C00422_SI_001.PDF

    Article  CAS  Google Scholar 

  68. Kazakova O, Lopatina T, Giniyatullina G, Mioc M, Soica C. Antimycobacterial activity of azepanobetulin and its derivative: In vitro, in vivo, ADMET and docking studies. Bioorg Chem. 2020;104:104209 https://doi.org/10.1016/J.BIOORG.2020.104209

    Article  CAS  PubMed  Google Scholar 

  69. Wanat K. Biological barriers, and the influence of protein binding on the passage of drugs across them. Mol Biol Rep. 2020;47:3221–31. https://doi.org/10.1007/S11033-020-05361-2/TABLES/4

    Article  CAS  PubMed  Google Scholar 

  70. Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7. https://doi.org/10.1038/SREP42717.

  71. Isyaku Y, Uzairu A, Uba S. Computational studies of a series of 2-substituted phenyl-2-oxo-, 2-hydroxyl- and 2-acylloxyethylsulfonamides as potent anti-fungal agents. Heliyon. 2020;6:e03724. https://doi.org/10.1016/J.HELIYON.2020.E03724

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the R&D wing of Integral University, Lucknow, for providing communication number IU/R&D/2022-MCN0001718. Dr. Amani salem almalki and Fatmah Ali Alasmary are thankful to Support through Researchers Supporting Project number (RSP2023R259), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

MA performed this research work under the direction of MN with the financial support of ASA and FAA under the Researchers Supporting Project number (RSP2023R259) at King Saud University, Riyadh, Saudi Arabia.

Corresponding author

Correspondence to Malik Nasibullah.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asif, M., Aqil, F., Alasmary, F.A. et al. Lewis base-catalyzed synthesis of highly functionalized spirooxindole-pyranopyrazoles and their in vitro anticancer studies. Med Chem Res 32, 1001–1015 (2023). https://doi.org/10.1007/s00044-023-03053-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03053-7

Keywords

Navigation