Skip to main content

Advertisement

Log in

Antibacterial, antifungal activities and toxicity of new synthetic fatty acid salicylate esters

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Microbial threats and their resistance to the available drugs are public health concerns that scientists worldwide are trying to solve. Before the discovery of conventional drugs, natural products like fatty acids and salicylic acid derivatives had shown their effectiveness in fighting against pathogens and nowadays, they are considered as the next generation of antimicrobials. This study aiming to prepare new antibacterial and antifungal drugs, 24 new salicylate-fatty acids were designed and synthesized from fatty acids and salicylate derivatives and tested in vitro on several bacteria and fungi strains. It was found that salicylates covalently linked to palmitic acid had the best results with good (MIC = 31.25 μg/ml) and moderate (MIC = 62.5 and 125 μg/ml) antibacterial and antifungal activity against streptococcus pneumoniae, Staphylococcus aureus, Salomonella typhi, klebsiella pneumoniae, Escherichia coli, Trichophyton mentagrophytes, Microsporum audouinii, Epidermophyton floccosum and Microsporum gypseum. It was observed that saturated medium-chain (lauric, myristic) and unsaturated long-chain (oleic, linoleic, eleostearic) fatty acid units quenched the antimicrobial activity. Also, esterifying the phenolic OH and increasing the number of benzene ring reduced, on one hand the antibacterial activity of the compounds bearing the palmitic acid and, on the other, increased their antifungal activity. Acute toxicity experiments revealed that mono salicyl-palmitate is a relatively non-toxic substance since neither mortality nor changes in general behaviors of animals were recorded for 14 days after its oral administrations to mice with the median lethal dose (LD50) greater than 5000 mg/kg. Therefore, palmitic acid-salicylate esters are potential active ingredients for antimicrobial drugs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. World Health Organization. Antimicrobial resistance. 2021. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.

  2. Butler MS, Cooper MA. Antibiotics in the clinical pipeline in 2011. J Antibiot. 2011;64:413–25. https://doi.org/10.1038/ja.2011.44.

    Article  CAS  Google Scholar 

  3. Ziemska J, Rajnisz A, Solecka J. New perspectives on antibacterial drug research. Cent Eur J Biol. 2013;8:943–57. https://doi.org/10.2478/s11535-013-0209-6.

    Article  CAS  Google Scholar 

  4. Guimarães A, Venâncio A. The potential of fatty acids and their derivatives as antifungal agents: a review. Toxins. 2022;14:188. https://doi.org/10.3390/toxins14030188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol. 2010;85:1629–42. https://doi.org/10.1007/s00253-009-2355-3.

    Article  CAS  PubMed  Google Scholar 

  6. Desbois AP. Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries. Recent Pat Antiinfect Drug Discov. 2012;7:111–22. https://doi.org/10.2174/157489112801619728.

    Article  CAS  PubMed  Google Scholar 

  7. Kabara JJ, Vrable R, Lie Ken Jie MSF. Antimicrobial lipids: natural and synthetic fatty acids and monoglycerides. Lipids. 1977;12:753–9. https://doi.org/10.1007/BF02570908.

    Article  CAS  PubMed  Google Scholar 

  8. Bergsson G, Arnfinnsson J, Steingrímsson O, Thormar H. In vitro killing of Candida albicans by fatty acids and monoglycerides. Antimicrob Agents Chemother. 2001;45:3209–12. https://doi.org/10.1128/AAC.45.11.3209-3212.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Franchea A, Fayeullea A, Lins L, Billamboz M, Pezrona I, Deleub M, et al. Amphiphilic azobenzenes: antibacterial activities and biophysical investigation of their interaction with bacterial membrane lipids. Bioorg Chem. 2020;94:103399. https://doi.org/10.1016/j.bioorg.2019.103399.

    Article  CAS  Google Scholar 

  10. Findlay B, Zhanel GG, Schweizer F. Cationic amphiphiles, a new generation of antimicrobials inspired by the natural antimicrobial peptide scaffold. Antimicrob Agents Chemother. 2010;54:4049–58. https://doi.org/10.1128/AAC.00530-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dhondikubeer R, Bera S, Zhanel G, Schweizer F. Antibacterial activity of amphiphilic tobramycin. J Antibiot. 2012;65:495–8. https://doi.org/10.1038/ja.2012.59.

    Article  CAS  Google Scholar 

  12. Quenon C, Hennebelle T, Butaud J-F, Ho R, Samaillie J, Neut C, et al. Antimicrobial properties of compounds isolated from Syzygium malaccense (L.) Merr. and L.M. Perry and medicinal plants used in French Polynesia. Life. 2022;12:733. https://doi.org/10.3390/life12050733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li W, Estrada-de los Santos P, Matthijs S, Xie G-L, Busson R, Cornelis P, et al. Promysalin, a salicylate-containing pseudomonas putida antibiotic, promotes surface colonization and selectively targets other pseudomonas. Chem Biol. 2011;18:1320–30. https://doi.org/10.1016/j.chembiol.2011.08.006.

    Article  CAS  PubMed  Google Scholar 

  14. Steele AD, Knouse KW, Keohane CE, Wuest WM. Total synthesis and biological investigation of (−)-Promysalin. J Am Chem Soc. 2015;137:7314–7. https://doi.org/10.1021/jacs.5b04767.

    Article  CAS  PubMed  Google Scholar 

  15. Kaduskar RD, Scala GD, Al Jabri ZJH, Arioli S, Musso L, Oggioni MR, et al. Promysalin is a salicylate-containing antimicrobial with a cell-membrane-disrupting mechanism of action on Gram-positive bacteria. Sci Rep. 2017;7:8861. https://doi.org/10.1038/s41598-017-07567-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dobler D, Schmidts T, Merzhäuser M, Schlupp P, Runkel F. Salicylate-based ionic liquids as innovative ingredients in dermal formulations. J Pharm Sci. 2022;111:1414–20. https://doi.org/10.1016/j.xphs.2021.09.028.

    Article  CAS  PubMed  Google Scholar 

  17. Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 2009;26:223–7. https://doi.org/10.1016/j.riam.2009.06.003.

    Article  PubMed  Google Scholar 

  18. Yu Y, Chen P, Gao M, Lan W, Sun S, Ma Z, et al. Amphotericin B tamed by salicylic acid. ACS Omega. 2022;7:14690–6. https://doi.org/10.1021/acsomega.1c07201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Balgavý P, Devínsky F. Cut-off effects in biological activities of surfactants. Adv Colloid Interface Sci. 1996;66:23–63. https://doi.org/10.1016/0001-8686(96)00295-3.

    Article  PubMed  Google Scholar 

  20. Ngaini Z, Mortadza NA. Synthesis of halogenated azo-aspirin analogues from natural product derivatives as the potential antibacterial agents. Nat Prod Res. 2019;33:3507–14. https://doi.org/10.1080/14786419.2018.1486310.

    Article  CAS  PubMed  Google Scholar 

  21. Bhattacharyya A, Sinha M, Singh H, Patel RS, Ghosh S, Sardana K, et al. Mechanistic insight into the antifungal effects of a fatty acid derivative against drug-resistant fungal infections. Front Microbiol. 2020;11:2116. https://doi.org/10.3389/fmicb.2020.0211.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Newton SM, Lau C, Gurcha SS, Besra GS, Wright CW. The evaluation of forty-three plant species for in vitro antimycobacterial activities; isolation of active constituents from Psoralea corylifolia and Sanguinaria Canadensis. J Ethnopharmacol. 2002;79:57–63. https://doi.org/10.1016/s0378-8741(01)00350-6.

    Article  PubMed  Google Scholar 

  23. Mativandlela SPN, Lall N, Meyer JJM. Antibacterial, antifungal and antitubercular activity of (the roots of) Pelargonium reniforme (CURT) and Pelargonium sidoides (DC) (Geraniaceae) root. S Afr J Bot. 2006;72:232–7. https://doi.org/10.1016/j.sajb.2005.08.002.

    Article  Google Scholar 

  24. Venugopal PV, Venugopal TV. In vitro susceptibility of dermatophytes to imidazoles. Indian J Dermatol. 1992;37:35–41.

    Google Scholar 

  25. CLSI. M27-S3. Reference method for broth dilution antifungal susceptibility testing of yeasts, 3rd informational supplement. Wayne, PA: Clinical and Laboratory Standards Institute; 2008.

  26. Publisher Organization for Economic Cooperation and Development (OECD). Guidelines for the Testing of Chemicals, OECD423. Acute oral toxicity-acute toxic class method, organization for economic cooperation and development, Paris; 2022. https://ntp.niehs.nih.gov/iccvam/suppdocs/feddocs/oecd/oecd_gl423.pdf.

Download references

Acknowledgements

This work was carried out with the aid of a grant from UNESCO-TWAS and the Swedish International Development Cooperation Agency (Sida) (Grant number: 21-327 RG/CHE/AF/AC_G-FR32403). The views expressed herein do not necessarily represent those of UNESCO-TWAS, Sida or its Board of Governors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique B. Ewonkem.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ewonkem, M.B., Deussom, P.M., Mbock, M.A. et al. Antibacterial, antifungal activities and toxicity of new synthetic fatty acid salicylate esters. Med Chem Res 32, 736–748 (2023). https://doi.org/10.1007/s00044-023-03034-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03034-w

Keywords

Navigation