Skip to main content
Log in

SAR study of niclosamide derivatives in the human glioblastoma U-87 MG cells

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Glioblastoma is a lethal malignant brain tumor, and the development of efficient chemotherapeutic agents remains an urgent need. Niclosamide, an anthelmintic drug, which has been used to treat tapeworm infections more than 50 years, has recently attracted renewed attention due to its evident anticancer activities. It has been shown that niclosamide induces cytotoxicity in human glioblastoma U-87 MG cells corresponding with increased protein ubiquitination, ER stress, and autophagy. Furthermore, niclosamide showed down regulation of multiple pro-survival signaling pathways including Wnt/β-catenin, PI3K/AKT, MAPK/ERK, and STAT3, which further caused reduction of U87-MG cell viability. However, the molecular mechanisms of niclosimide and its derivatives in cancer are not fully understood. In the present article, 12 niclosamide derivatives were synthesized by the replacement of substituents for the structure-activity relationship (SAR) study of the protein ubiquitination and related signaling pathways. Our approach is to identify which substituents of niclosamide play important roles in inducing cell apoptosis, inhibition of cell growth, and down regulation of cell survival signaling pathways. Our results indicate that phenol OH of niclosamide plays a significant role in the anti-glioblastoma activity, while missing Cl (5- or 2′-Cl) showed almost no such effect. 4′-N3 or CF3 has the similar activity to niclosamide (4′-NO2) whereas NH2 significantly decreased the cytotoxicity in U87 cells. These modified compounds can be tested to determine which are most effective on cancer treatment. These findings are important in the development of multi-functionalized niclosamide and drug design therapy in the future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1

Similar content being viewed by others

References

  1. Mercer RW, Tyler MA, Ulasov IV, Lesniak MS. Targeted therapies for malignant glioma. BioDrugs. 2009;23:25–35. https://doi.org/10.2165/00063030-200923010-00003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shangguan F, Liu Y, Ma L, Qu G, Lv Q, An J. et al. Niclosamide inhibits ovarian carcinoma growth by interrupting cellular bioenergetics. J Cancer. 2020;11:3454–66. https://doi.org/10.7150/jca.41418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee Y, Lee JK, Ahn SH, Lee J, Nam DH. WNT signaling in glioblastoma and therapeutic opportunities. Lab Invest. 2016;96:137–50. https://doi.org/10.1038/labinvest.2015.140.

    Article  CAS  PubMed  Google Scholar 

  4. Mukthavaram R, Ouyang X, Saklecha R, Jiang P, Nomura N, Pingle SC. Effect of the JAK2/STAT3 inhibitor SAR317461 on human glioblastoma tumorspheres. J Transl Med. 2015;13:269. https://doi.org/10.1186/s12967-015-0627-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Solinas M, Massi P, Cinquina V, Valenti M, Bolognini D, Gariboldi M. et al. Cannabidiol, a non-psychoactive cannabinoid compound, inhibits proliferation and invasion in U87-MG and T98G glioma cells through a multitarget effect. PLoS One. 2013;8:e76918. https://doi.org/10.1371/journal.pone.0076918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luwor RB, Stylli SS, Kaye AH. The role of Stat3 in glioblastoma multiforme. J Clin Neurosci. 2013;20:907–11. https://doi.org/10.1016/j.jocn.2013.03.006.

    Article  CAS  PubMed  Google Scholar 

  7. Taylor TE, Furnari FB, Cavenee WK. Targeting EGFR for treatment of glioblastoma: molecular basis to overcome resistance. Curr Cancer Drug Targets. 2012;12:197–209. https://doi.org/10.2174/156800912799277557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sathornsumetee S. Therapeutic strategies to target multiple kinases in glioblastoma. Anticancer Agents Med Chem. 2011;11:700–11. https://doi.org/10.2174/187152011797378661.

    Article  CAS  PubMed  Google Scholar 

  9. Sunayama J, Matsuda K, Sato A, Tachibana K, Suzuki K, Narita Y. et al. Crosstalk between the PI3K/mTOR and MEK/ERK pathways involved in the maintenance of self-renewal and tumorigenicity of glioblastoma stem-like cells. Stem Cells. 2010;28:1930–9. https://doi.org/10.1002/stem.521.

    Article  CAS  PubMed  Google Scholar 

  10. Geng Y, Kohli L, Klocke BJ, Roth KA. Chloroquine-induced autophagic vacuole accumulation and cell death in glioma cells is p53 independent. Neuro Oncol. 2010;12:473–81. https://doi.org/10.1093/neuonc/nop048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weinbach EC, Garbus J. Mechanism of action of reagents that uncouple oxidative phosphorylation. Nature. 1969;221:1016–8. https://doi.org/10.1038/2211016a0.

    Article  CAS  PubMed  Google Scholar 

  12. Kaushal JB, Bhatia R, Kanchan RK, Raut P, Mallapragada S, Ly QP, et al. Repurposing niclosamide for targeting pancreatic cancer by inhibiting Hh/Gli non-canonical axis of Gsk3β. Cancers. 2021;13:3105.

    Article  CAS  Google Scholar 

  13. Luo F, Luo M, Rong Q-X, Zhang H, Chen Z, Wang F. et al. Niclosamide, an antihelmintic drug, enhances efficacy of PD-1/PD-L1 immune checkpoint blockade in non-small cell lung cancer. J Immunother Cancer. 2019;7:245. https://doi.org/10.1186/s40425-019-0733-7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kadri H, Lambourne OA, Mehellou Y. Niclosamide, a drug with many (Re)purposes. ChemMedChem. 2018;13:1088–91. https://doi.org/10.1002/cmdc.201800100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumar R, Coronel L, Somalanka B, Raju A, Aning OA, An O. et al. Mitochondrial uncoupling reveals a novel therapeutic opportunity for p53-defective cancers. Nat Commun. 2018;9:3931. https://doi.org/10.1038/s41467-018-05805-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burock S, Daum S, Keilholz U, Neumann K, Walther W, Stein U. Phase II trial to investigate the safety and efficacy of orally applied niclosamide in patients with metachronous or sychronous metastases of a colorectal cancer progressing after therapy: the NIKOLO trial. BMC Cancer. 2018;18:297. https://doi.org/10.1186/s12885-018-4197-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alasadi A, Chen M, Swapna GVT, Tao H, Guo J, Collantes J. et al. Effect of mitochondrial uncouplers niclosamide ethanolamine (NEN) and oxyclozanide on hepatic metastasis of colon cancer. Cell Death Dis. 2018;9:215. https://doi.org/10.1038/s41419-017-0092-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li Y, Li P-K, Roberts MJ, Arend RC, Samant RS, Buchsbaum DJ. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett. 2014;349:8–14. https://doi.org/10.1016/j.canlet.2014.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barbosa EJ, Löbenberg R, de Araujo GLB, Bou-Chacra NA. Niclosamide repositioning for treating cancer: Challenges and nano-based drug delivery opportunities. Eur J Pharmaceutics Biopharmaceutics. 2019;141:58–69. https://doi.org/10.1016/j.ejpb.2019.05.004.

    Article  CAS  Google Scholar 

  20. Chen W, Mook RA Jr., Premont RT, Wang J. Niclosamide: Beyond an antihelminthic drug. Cell Signal. 2018;41:89–96. https://doi.org/10.1016/j.cellsig.2017.04.001.

    Article  CAS  PubMed  Google Scholar 

  21. Wieland A, Trageser D, Gogolok S, Reinartz R, Höfer H, Keller M, et al. Anticancer effects of niclosamide in human glioblastoma. Clin Cancer Res. 2013;19:4124–36. https://doi.org/10.1158/1078-0432.Ccr-12-2895.

    Article  CAS  PubMed  Google Scholar 

  22. Cheng B, Morales LD, Zhang Y, Mito S, Tsin A. Niclosamide induces protein ubiquitination and inhibits multiple pro-survival signaling pathways in the human glioblastoma U-87 MG cell line. PLoS One. 2017;12:e0184324. https://doi.org/10.1371/journal.pone.0184324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bermea KC, Casillas EA, Morales LD, Valdez LL, Su BB, Tsin A, et al. Evidence of a neuroprotective function for niclosamide in human SH-SY5Y neuroblastoma and rat PC12 neural cells acta scientific. Neurology. 2020;3:85–94.

    Google Scholar 

  24. Mook RA Jr., Wang J, Ren XR, Chen M, Spasojevic I, Barak LS. et al. Structure-activity studies of Wnt/β-catenin inhibition in the Niclosamide chemotype: Identification of derivatives with improved drug exposure. Bioorg Med Chem. 2015;23:5829–38. https://doi.org/10.1016/j.bmc.2015.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mook RA Jr., Chen M, Lu J, Barak LS, Lyerly HK, Chen W. Small molecule modulators of Wnt/β-catenin signaling. Bioorg Med Chem Lett. 2013;23:2187–91. https://doi.org/10.1016/j.bmcl.2013.01.101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carbone G, Burnley J, Moses JE. A catalytic and tert-butoxide ion-mediated amidation of aldehydes with para-nitro azides. Chem Commun. 2013;49:2759–61. https://doi.org/10.1039/C3CC40452H.

    Article  CAS  Google Scholar 

  27. Xia C, Xu J, Wu W, Liang X. Pd/C-catalyzed hydrodehalogenation of aromatic halides in aqueous solutions at room temperature under normal pressure. Catal Commun. 2004;5:383–6. https://doi.org/10.1016/j.catcom.2004.04.006.

    Article  CAS  Google Scholar 

  28. Marzi E, Gorecka J, Schlosser M. The regioexhaustive functionalization of difluorophenols and trifluoro­phenols through organometallic intermediates. Synthesis. 2004;2004:1609–18.

    Article  Google Scholar 

  29. Fonseca BD, Diering GH, Bidinosti MA, Dalal K, Alain T, Balgi AD. et al. Structure-activity analysis of niclosamide reveals potential role for cytoplasmic pH in control of mammalian target of rapamycin complex 1 (mTORC1) signaling. J Biol Chem. 2012;287:17530–45. https://doi.org/10.1074/jbc.M112.359638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen X, Cubillos-Ruiz JR. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer. 2021;21:71–88. https://doi.org/10.1038/s41568-020-00312-2.

    Article  CAS  PubMed  Google Scholar 

  31. Ding W-X, Ni H-M, Gao W, Yoshimori T, Stolz DB, Ron D, et al. Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol. 2007;171:513–24. https://doi.org/10.2353/ajpath.2007.070188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu J, Berastegui-Cabrera J, Ye N, Carretero-Ledesma M, Pachón-Díaz J, Chen H, et al. Discovery of novel substituted N-(4-Amino-2-chlorophenyl)-5-chloro-2-hydroxybenzamide analogues as potent human adenovirus inhibitors. J Medicinal Chem. 2020;63:12830–52. https://doi.org/10.1021/acs.jmedchem.0c01226.

    Article  CAS  Google Scholar 

  33. Perin N, Roškarić P, Sović I, Boček I, Starčević K, Hranjec M, et al. Amino-substituted benzamide derivatives as promising antioxidant agents: a combined experimental and computational study. Chem Res Toxicol. 2018;31:974–84. https://doi.org/10.1021/acs.chemrestox.8b00175.

    Article  CAS  PubMed  Google Scholar 

  34. He X, Li M, Ye W, Zhou W. Discovery of degradable niclosamide derivatives able to specially inhibit small cell lung cancer (SCLC). Bioorg Chem. 2021;107:104574. https://doi.org/10.1016/j.bioorg.2020.104574.

    Article  CAS  PubMed  Google Scholar 

  35. Fomovska A, Wood RD, Mui E, Dubey JP, Ferreira LR, Hickman MR, et al. Salicylanilide inhibitors of toxoplasma gondii. J Medicinal Chem. 2012;55:8375–91. https://doi.org/10.1021/jm3007596.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The chemistry part in this manuscript is supported by College of Science SEED grant at The University of Texas Rio Grande Valley (UTRGV), and Welch Foundation departmental Grant (BX-0048). SM acknowledge the support of COS Writing-mentoring program. Valerie Tobias is also acknowledged for checking the references. Also, this work is supported by the Department of Molecular Science, School of Medicine at UTRGV and funding from the State of Texas Innovative Research and Development Program. The authors also appreciate Drs. J. G. Persons and J. Gutierrez for proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SM and BC conceptualized the study and supervised and provided support throughout the project. SM designed the modifications and interpreted the data. SM, BAG and TCR synthesized and characterized the compounds. BC, DG, XYO and FXE conducted the cell culture and Western blot analysis. AZ provided the support for biological assays. SC and MAA conducted MTT assays. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Shizue Mito.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mito, S., Cheng, B., Garcia, B.A. et al. SAR study of niclosamide derivatives in the human glioblastoma U-87 MG cells. Med Chem Res 31, 1313–1322 (2022). https://doi.org/10.1007/s00044-022-02907-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02907-w

Keywords

Navigation