Skip to main content
Log in

N-Phosphorylation of daunorubicin—synthetic approaches and antiproliferative properties of the products

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Synthetic approaches to daunorubicin derivatives containing azide and propargyl fragments were developed. A series of phosphonate and bisphosphonate derivatives (including those containing P–C–P fragments) were obtained by the methods of click chemistry and by direct amidation. The obtained compounds show small cytotoxicity not higher than that of parent daunorubicin.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8

Similar content being viewed by others

References

  1. Mross K, Massing U, Kratz F. DNA-intercalators – the anthracyclines. In: Pinedo HM, Smorenburg CH, editors. Drugs Affecting Growth of Tumours. p. 19–81. https://doi.org/10.1007/3-7643-7407-1. (2006)

  2. Cassinelli G. The roots of modern oncology: from discovery of new antitumor anthracyclines to their clinical use. Tumor J. 2016;3:226–35.

    Article  Google Scholar 

  3. Yu S, Zhang G, Zhang W, Luo H, Qiu L, Liu Q, et al. Synthesis and biological activities of a 3’-azido analogue of doxorubicin against drug-resistant cancer cells. Mol Sci. 2012;13:3671–84.

    Article  CAS  Google Scholar 

  4. Seshadri R, Israel M, William PJ. Adriamycin analogs. Preparation and biological evaluation of some novel 14-thiaadriamycins. J Med Chem. 1983;26:11–5.

    Article  CAS  Google Scholar 

  5. Zhang G, Fang L, Zhu L, Sun D, Wang PG. Synthesis and biological activity of bisdaunorubicins. Bioorg Med Chem. 2006;14:426–34.

    Article  CAS  Google Scholar 

  6. Chaires JB, Leng F, Przewloka T, Fokt I, Ling Y-H, Perez-Soler R, et al. Structure-based design of a new bisintercalating anthracycline antibiotic. J Med Chem. 1997;40:261–66.

    Article  CAS  Google Scholar 

  7. Seshadri R, Idriss JM, Israel M. Preparation and biological evaluation of some thio ester analogues of adriamycin and N-(trifluoroacetyl)adriamycin 14-valerate. J Med Chem. 1986;29:1269–73.

    Article  CAS  Google Scholar 

  8. Ghirmai S, Mume E, Tolmachev V, Sjoberg S. Synthesis and radioiodination of some daunorubicin and doxorubicin derivatives. Carbohydr Res. 2005;340:15–24.

    Article  CAS  Google Scholar 

  9. Zhang S-J, Dong J-Q, Wang Y-G. Synthesis and biological activities of novel seleno epi-daunomycin derivatives. Synth Commun. 2003;33:1891–8.

    Article  CAS  Google Scholar 

  10. Sharova EV, Artyushin OI, Vinogradova NV, Genkina GK, Brel VK. Synthesis of hybrid compounds composed of daunorubicin covalently liked with Cp2Fe and CpMn(CO)3. Mendeleev Commun. 2017;27:608–9.

    Article  CAS  Google Scholar 

  11. Preobrazhenskaya N. Developments in the research of new antitumor agents (review). Khim Geterotsikl Soedin. 1985;1:18–31.

    Google Scholar 

  12. Martins-Teixeira MB, Carvalho I. Antitumor anthracyclines: progress and perspectives. ChemMedChem. 2020;15:933–48.

    Article  CAS  Google Scholar 

  13. David E, Cagnol S, Goujon J-Y, Egorov M, Taurelle J, Benesteau C, et al. 12b80 – hydroxybisphosphonate linked doxorubicin: bone targeted strategy for treatment of osteosarcoma. Bioconjugate Chem. 2019;30:1665–76.

    Article  CAS  Google Scholar 

  14. Protsenko LD, Shapiro AB, Ovrutskii VM, Suskina VI, Vasil’eva LS, Denisova LK, et al. Synthesis and biological activity of organophosphorus derivatives of rubomycine with bis(2-chlorethyl)amino groups. Khim Farm Zh . 1985;19:1199–202.

    CAS  Google Scholar 

  15. Csorvasi A, Kover KE, Menyhart MM, Sztaricskai F, Dobrynin YV, Nikolaeva TG. Synthesis of phosphoramide mustard analogues of daunomycin and carminomycin. Arch Pharm. Med Chem. 1998;331:265–8.

    CAS  Google Scholar 

  16. Kim JS, Sharma A, Lee MG, Won M, Lee JY, Chi S-G, et al. Anticancer prodrug for overcoming drug resistance. US20200129626. 2018 October 24.

  17. Vorobyeva DV, Karimova NM, Odinets IL, Röschenthaler G-V, Osipov SN. Click-chemistry approach to isoxazole-containing α-CF3-substituted α-aminocarboxylates and α-aminophosphonates. Org Biomol Chem. 2011;9:7335–42.

    Article  CAS  Google Scholar 

  18. Skarpos H, Osipov SN, Vorob’eva DV, Odinets IL, Lork E, Röschenthaler G-V. Synthesis of functionalized bisphosphonates via click chemistry. Org Biomol Chem. 2007;5:2361–7.

    Article  CAS  Google Scholar 

  19. Omiecinski CJ, Heuvel JPV, Perdew GH, Peters JM. Xenobiotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxicities. Toxicol Sci. 2010;120:S49–S75.

    Article  Google Scholar 

  20. Shiryaeva OA, Semenova NA, Sibeldina LA, Goncharova SA, Konovalova NP. Phosphorus-containing metabolites in anthracycline-resistant murine leukemia P388 cells. Neoplasma. 1992;39:229–32.

    CAS  PubMed  Google Scholar 

  21. Piotrowska DG, Andrei G, Schols D, Snoeck R, Grabkowska-Druzyc M. New isoxazolidine-conjugates of quinazolinones – synthesis, antiviral and cytostatic activity. Molecules. 2016;21:1–15.

    Article  Google Scholar 

  22. Chrobak E, Bębenek E, Kadela-Tomanek M, Latocha M, Jelsch C, Wenger E, et al. Betulin phosphonates; synthesis, structure, and cytotoxic activity. Molecules. 2016;21:1123.

    Article  Google Scholar 

  23. Tsepaeva OV, Nemtarev AV, Abdullin TI, Grigor’eva LR, Kuznetsova EV, Akhmadishina RA, et al. synthesis, and cancer cell growth inhibitory activity of triphenylphosphonium derivatives of the triterpenoid botulin. J Nat Prod. 2017;80:2232–9.

    Article  CAS  Google Scholar 

  24. Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem Int Ed. 2001;40:2004–21.

    Article  CAS  Google Scholar 

  25. Artyushin OI, Sharova EV, Vinogradova NM, Genkina GK, Moiseeva AA, Klemenkova ZV, et al. Synthesis of camfphaecene derivatives using clic chemistry methodology and study of their antiviral activity. Bioorg Med Chem Lett. 2017;27:2181–4.

    Article  CAS  Google Scholar 

  26. Tong GL, Wu HY, Henry DW. Adriamycin analogues. 3. Synthesis of N-alkylated anthracyclines with enhanced efficacy and reduced cardiotoxicity. J Med Chem. 1979;22:912–8.

    Article  CAS  Google Scholar 

  27. Gil JM, Hah JH, Park KY, Oh DY. A facile synthesis of diethyl 1-formylalkane phosphonates via ozonolysis of 1-alkyl allylic phosphonates. Synth Commun. 2000;30:789–94.

    Article  CAS  Google Scholar 

  28. Masquelier M, Tirzitis G, Peterson CO, Palsson M, Amolins A, Plotniece M, et al. Plasma stability and cytotoxicity of lipophilic daunorubicin derivatives incorporated into low density lipoproteins. Eur J Med Chem. 2000;35:429–38.

    Article  CAS  Google Scholar 

  29. Mielczarek-Puta M, Struga M, Roszkowski P. Synthesis and anticancer effects of conjugates of doxorubicin and unsaturated fatty acids (LNA and DHA). Med Chem Res. 2019;28:2153–64.

    Article  CAS  Google Scholar 

  30. Baszczynski O, Watt JM, Rozewitz MD, Fliegert R, Gusec AH, Potter BVL. Synthesis of phosphonoacetate analogues of the second messenger adenosine 50 –diphosphate ribose (ADPR). RSC Adv 2020;10:1776–85.

    Article  CAS  Google Scholar 

  31. Patel DV, Schmidt RJ, Biller SA, Gordon EM, Robinson SS, Manne V. Farnesyl diphosphate-based inhibitors of ras farnesyl protein transferase. J Med Chem. 1995;38:2906–21.

    Article  CAS  Google Scholar 

  32. Anikina LV, Semakov AV, Afanas’eva SV, Pukhov SA, Klochkov SG. Synthesis and antiproliferative activity of daunorubicin conjugates with sesquiterpene lactones. Pharm Chem J. 2018;52:308–11.

    Article  CAS  Google Scholar 

  33. Brel VK, Artyushin OI, Chuprov-Netochin RN, Leonov SV, Semenova MN, Semenov VV. Synthesis and biological evaluation of indolylglyoxylamide bisphosphonates, antimitotic microtubule-targeting derivatives of indibulin with improved aqueous solubility. Bioorg Med Chem Lett. 2020;30:127635.

    Article  CAS  Google Scholar 

  34. Brel VK, Moiseeva AA, Artyushin OI, Anikina LV, Klemenkova ZS. Simple methods of modification of daunorubicin on the daunosamine nitrogen atom. Med Chem Res. 2021;30:564–73.

    Article  CAS  Google Scholar 

  35. Artyushin OI, Vorob’eva DV, Vasil’eva TP, Osipov SN, Roschenthaler G-V, Odinets IL. Facile synthesis of phosphorylated azides in ionic liquids and their use in the preparation of 1,2,3-triazoles. Het Chem. 2008;19:293–300.

    Article  CAS  Google Scholar 

  36. Ziegler FE, Fowler KW, Rodgers WB, Wester RT. Ambient-temperature Ullman reaction: 4,5,4’,5’-tetramethoxy-1,1’-biphenyl-2,2’-dicarboxaldehyde. Org Syntheses. 1993;VIII:586–93.

    Google Scholar 

  37. Castaneda L, Maruani A, Schumacher FF, Miranda E, Chudasama V, Chester KA, et al. Acid-cleavable thiomaleamic acid linker for homogeneous antibody-drug conjugation. Chem Commun. 2013;49:8187–9.

    Article  CAS  Google Scholar 

  38. González-Méndez I, Aguayo-Ortiz R, Sorroza-Martínez K, Solano JD, Porcu P, Rivera E, et al. Conformational analysis by NMR and molecular dynamics of adamantanedoxorubicin prodrugs and their assemblies with β-cyclodextrin: a focus on the design of platforms for controlled drug delivery. Bioorg Med Chem. 2020;28:115510.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery K. Brel.

Ethics declarations

Conflict of interest

The authors declare no cmpeting interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseeva, A.A., Artyushin, O.I., Anikina, L.V. et al. N-Phosphorylation of daunorubicin—synthetic approaches and antiproliferative properties of the products. Med Chem Res 31, 1011–1025 (2022). https://doi.org/10.1007/s00044-022-02889-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02889-9

Keywords

Navigation