Skip to main content
Log in

Design, synthesis of amide derivatives of scutellarin and their antileukemia and neuroprotective activities

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A unique series of amide-scutellarin derivatives were designed and synthesized in order to develop the function of scutellarin further. The antiproliferative activity of all target compounds against two human leukemia cell line was evaluated. Among them, compounds 6g and 7c displayed the most antitumor activities against HL-60 and THP-1 cells. Moreover, all compounds were also assayed for their neuroprotective activity against hydrogen peroxide (H2O2)-induced PC12 cell injury, and the majority of the compounds had moderate to good neuroprotective properties. These findings confirmed that these target compounds could be used as antileukemia or neuroprotective candidates in the future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32. https://doi.org/10.3322/caac.21338.

    Article  PubMed  Google Scholar 

  3. Miranda-Filho A, Piñeros M, Ferlay J, Soerjomataram I, Monnereau A, Bray F. Epidemiological patterns of leukaemia in 184 countries: a population-based study. Lancet Haematol. 2018;5:e14–24. https://doi.org/10.1016/S2352-3026(17)30232-6.

    Article  PubMed  Google Scholar 

  4. Trama A, Botta L, Steliarova-Foucher E. Cancer burden in adolescents and young adults: a review of epidemiological evidence. Cancer J. 2018;24:256–66. https://doi.org/10.1097/PPO.0000000000000346.

    Article  PubMed  Google Scholar 

  5. You L, Lv Z, Li C, Ye W, Zhou Y, Jin J, et al. Worldwide cancer statistics of adolescents and young adults in 2019: a systematic analysis of the Global Burden of Disease Study 2019. ESMO Open. 2021;6:100255. https://doi.org/10.1016/j.esmoop.2021.100255.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Farge T, Saland E, de Toni F, Aroua N, Hosseini M, Perry R, et al. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov. 2017;7:716–35. https://doi.org/10.1158/2159-8290.CD-16-0441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Almehmadi SJ, Alsaedi AMR, Harras MF, Farghaly TA. Synthesis of a new series of pyrazolo[1,5-a]pyrimidines as CDK2 inhibitors and anti-leukemia. Bioorg Chem. 2021;117:105431. https://doi.org/10.1016/j.bioorg.2021.105431.

    Article  CAS  PubMed  Google Scholar 

  8. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803. https://doi.org/10.1021/acs.jnatprod.9b01285.

    Article  CAS  PubMed  Google Scholar 

  9. Raffa D, Maggio B, Raimondi MV, Plescia F, Daidone G. Recent discoveries of anticancer flavonoids. Eur J Med Chem. 2017;142:213–28. https://doi.org/10.1016/j.ejmech.2017.07.034.

    Article  CAS  PubMed  Google Scholar 

  10. Pinto C, Cidade H, Pinto M, Tiritan ME. Chiral flavonoids as antitumor agents. Pharmaceuticals. 2021;14:1267. https://doi.org/10.3390/ph14121267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mahmoud AM, Hernández Bautista RJ, Sandhu MA, Hussein OE. Beneficial effects of citrus flavonoids on cardiovascular and metabolic health. Oxid Med Cell Longev. 2019;2019:5484138. https://doi.org/10.1155/2019/5484138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Spagnuolo C, Moccia S, Russo GL. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur J Med Chem. 2018;153:105–15. https://doi.org/10.1016/j.ejmech.2017.09.001.

    Article  CAS  PubMed  Google Scholar 

  13. Fan H, Lin P, Kang Q, Zhao ZL, Wang J, Cheng JY. Metabolism and pharmacological mechanisms of active ingredients in Erigeron breviscapus. Curr Drug Metab. 2021;22:24–39. https://doi.org/10.2174/1389200221666201217093255.

    Article  CAS  PubMed  Google Scholar 

  14. Deng W, Han W, Fan T, Wang X, Cheng Z, Wan B, et al. Scutellarin inhibits human renal cancer cell proliferation and migration via upregulation of PTEN. Biomed Pharmacother. 2018;107:1505–13. https://doi.org/10.1016/j.biopha.2018.08.127.

    Article  CAS  PubMed  Google Scholar 

  15. Yang N, Zhao Y, Wang Z, Liu Y, Zhang Y. Scutellarin suppresses growth and causes apoptosis of human colorectal cancer cells by regulating the p53 pathway. Mol Med Rep. 2017;15:929–35. https://doi.org/10.3892/mmr.2016.6081.

    Article  CAS  PubMed  Google Scholar 

  16. Li F, Wang S, Niu M. Scutellarin inhibits the growth and EMT of gastric cancer cells through regulating PTEN/PI3K pathway. Biol Pharm Bull. 2021;44:780–8. https://doi.org/10.1248/bpb.b20-00822.

    Article  CAS  PubMed  Google Scholar 

  17. Sun W, Ge Y, Cui J, Yu Y, Liu B. Scutellarin resensitizes oxaliplatin-resistant colorectal cancer cells to oxaliplatin treatment through inhibition of PKM2. Mol Ther Oncolytics. 2021;21:87–97. https://doi.org/10.1016/j.omto.2021.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xie Z, Guo Z, Lei J, Yu J. Scutellarin synergistically enhances cisplatin effect against ovarian cancer cells through enhancing the ability of cisplatin binding to DNA. Eur J Pharmacol. 2019;844:9–16. https://doi.org/10.1016/j.ejphar.2018.11.040.

    Article  CAS  PubMed  Google Scholar 

  19. Sun CY, Zhu Y, Li XF, Wang XQ, Tang LP, Su ZQ, et al. Scutellarin increases cisplatin-induced apoptosis and autophagy to overcome cisplatin resistance in non-small cell lung cancer via ERK/p53 and c-met/AKT signaling pathways. Front Pharmacol. 2018;9:92. https://doi.org/10.3389/fphar.2018.00092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bao J, Xia L, Zhao Y, Xia R. Scutellarin exerts anticancer effects on human leukemia cells via induction of Sub-G1 cell cycle arrest, apoptosis and also inhibits migration and invasion by targeting Raf/MEK/ERK signalling pathway. J BUON. 2020;25:1050–5.

    PubMed  Google Scholar 

  21. Liu X, Ye F, Wu J, How B, Li W, Zhang DY. Signaling proteins and pathways affected by flavonoids in leukemia cells. Nutr Cancer. 2015;67:238–49. https://doi.org/10.1080/01635581.2015.989372.

    Article  CAS  PubMed  Google Scholar 

  22. Feng Y, Zhang S, Tu J, Cao Z, Pan Y, Shang B, et al. Novel function of scutellarin in inhibiting cell proliferation and inducing cell apoptosis of human Burkitt lymphoma Namalwa cells. Leuk Lymphoma. 2012;53:2456–64. https://doi.org/10.3109/10428194.2012.693177.

    Article  CAS  PubMed  Google Scholar 

  23. Wang L, Ma Q. Clinical benefits and pharmacology of scutellarin: a comprehensive review. Pharmacol Ther. 2018;190:105–27. https://doi.org/10.1016/j.pharmthera.2018.05.006.

    Article  CAS  PubMed  Google Scholar 

  24. Hu X, Teng S, He J, Sun X, Du M, Kou L, et al. Pharmacological basis for application of scutellarin in Alzheimer’s disease: antioxidation and antiapoptosis. Mol Med Rep. 2018;18:4289–96. https://doi.org/10.3892/mmr.2018.9482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zaidi FK, Deep S. Scutellarin inhibits the uninduced and metal-induced aggregation of α-Synuclein and disaggregates preformed fibrils: implications for Parkinson’s disease. Biochem J. 2020;477:645–70. https://doi.org/10.1042/BCJ20190705.

    Article  CAS  PubMed  Google Scholar 

  26. Wang L, Ma Q. Clinical benefits and pharmacology of scutellarin: a comprehensive review. Pharmacol Ther. 2018;190:105–27. https://doi.org/10.1016/j.pharmthera.2018.05.006.

    Article  CAS  PubMed  Google Scholar 

  27. Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules 2019;24:1583. https://doi.org/10.3390/molecules24081583.

    Article  CAS  PubMed Central  Google Scholar 

  28. Han T, Li J, Xue J, Li H, Xu F, Cheng K, et al. Scutellarin derivatives as apoptosis inducers: design, synthesis and biological evaluation. Eur J Med Chem. 2017;135:270–81. https://doi.org/10.1016/j.ejmech.2017.03.020.

    Article  CAS  PubMed  Google Scholar 

  29. Li NG, Shen MZ, Wang ZJ, Tang YP, Shi ZH, Fu YF, et al. Design, synthesis and biological evaluation of glucose-containing scutellarein derivatives as neuroprotective agents based on metabolic mechanism of scutellarin in vivo. Bioorg Med Chem Lett. 2013;23:102–6. https://doi.org/10.1016/j.bmcl.2012.11.002.

    Article  CAS  PubMed  Google Scholar 

  30. Hamada Y. Recent progress in prodrug design strategies based on generally applicable modifications. Bioorg Med Chem Lett. 2017;27:1627–32. https://doi.org/10.1016/j.bmcl.2017.02.075.

    Article  CAS  PubMed  Google Scholar 

  31. Ding D, Zhang B, Meng T, Ma Y, Wang X, Peng H, et al. Novel synthetic baicalein derivatives caused apoptosis and activated AMP-activated protein kinase in human tumor cells. Org Biomol Chem. 2011;9:7287–91. https://doi.org/10.1039/c1ob06094e.

    Article  CAS  PubMed  Google Scholar 

  32. Luo R, Wang J, Zhao L, Lu N, You Q, Guo Q, et al. Synthesis and biological evaluation of baicalein derivatives as potent antitumor agents. Bioorg Med Chem Lett. 2014;24:1334–8. https://doi.org/10.1016/j.bmcl.2014.01.053.

    Article  CAS  PubMed  Google Scholar 

  33. Wen L, He T, Yu A, Sun S, Li X, Wei J, et al. Breviscapine: a review on its phytochemistry, pharmacokinetics and therapeutic effects. Am J Chin Med. 2021;49:1369–97. https://doi.org/10.1142/S0192415X21500646.

    Article  CAS  PubMed  Google Scholar 

  34. Ma L, Zhang J, Wang X, Yang J, Guo L, Wang X, et al. Design and synthesis of diosgenin derivatives as apoptosis inducers through mitochondria-related pathways. Eur J Med Chem. 2021;217:113361. https://doi.org/10.1016/j.ejmech.2021.113361.

    Article  CAS  PubMed  Google Scholar 

  35. Li H, Mu J, Sun J, Xu S, Liu W, Xu F, et al. Hydrogen sulfide releasing oridonin derivatives induce apoptosis through extrinsic and intrinsic pathways. Eur J Med Chem. 2020;187:111978. https://doi.org/10.1016/j.ejmech.2019.111978.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Guiding Science and Technology Plan Project of the City of Daqing (No. zd-2020-60) and Heilongjiang Bayi Agricultural University Support Program for San Heng San Zong (No. ZRCPY201910), the central government supports local college reform and development fund talent training projects (2020GSP16), the Heilongjiang Touyan Innovation Team Program (2019HTY078) and the Project for Heilongjiang Bayi Agricultural University (XDB202012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenghao Jin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, T., Jiang, C., Wei, X. et al. Design, synthesis of amide derivatives of scutellarin and their antileukemia and neuroprotective activities. Med Chem Res 31, 905–915 (2022). https://doi.org/10.1007/s00044-022-02885-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02885-z

Keywords

Navigation