Skip to main content

Advertisement

Log in

Design, synthesis and biological evaluation of indoline derivatives as multifunctional agents for the treatment of ischemic stroke

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In this work, a series of indoline derivatives as multifunctional neuroprotective agents for battling ischemic stroke were designed, synthesized, and biologically evaluated. In antioxidant assay, all compounds showed significant protective effects against H2O2-induced death of RAW 264.7 cells. In oxygen glucose deprivation/reperfusion (OGD/R)-induced neuronal damage, some compounds significantly elevated the cell survival rate. Among them, 7i, 7j and 7r exerted comparable neuroprotective effects to ifenprodil, and exhibited binding affinity to N-methyl-D-aspartic acid receptors 2B (NMDA-GluN2B). At the concentrations of 0.1, 1 and 10 μM, 7i, 7j and 7r dose-dependently lowered the LPS-induced secretion of inflammatory cytokines, including TNF-α, IL-6 and NO, by BV-2 cells. Importantly, 7i and 7j can dramatically reduce the cerebral infarction rate and improve neurological deficit scores in middle cerebral artery occlusion (MCAO) rat model. As demonstrated by the above results, 7i and 7j are potential neuroprotective agents for the treatment of ischemic stroke.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu J, Wang B, Li M, Shi YH, Wang C, Kang YG. Network pharmacology identification of mechanisms of cerebral ischemia injury amelioration by Baicalin and Geniposide. Eur J Pharmacol 2019;859:172484 https://doi.org/10.1016/j.ejphar.2019.172484.

    Article  CAS  PubMed  Google Scholar 

  2. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, et al. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet 2014;383:245–55. https://doi.org/10.1016/S0140-6736(13)61953-4

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sommer, Clemens J. Ischemic stroke: experimental models and reality. Acta Neuropathol. 2017;133:245–61. https://doi.org/10.1007/s00401-017-1667-0

    Article  PubMed  PubMed Central  Google Scholar 

  4. Roth GA, Forouzanfar MH, Moran AE, Barber R, Nguyen G, Feigin VL, et al. Demographic and epidemiologic drivers of global cardiovascular mortality. N. Engl J Med. 2015;372:1333–41. https://doi.org/10.1056/NEJMoa1406656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deb P, Sharma S, Hassan KM. Pathophysiologic mechanisms of acute ischemic stroke: an overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology. 2010;17:197–18. https://doi.org/10.1016/j.pathophys.2009.12.001

    Article  CAS  PubMed  Google Scholar 

  6. Jung S, Gralla J, Fischer U, Mono ML, Weck A, Ludi R, et al. Safety of endovascular treatment beyond the 6-h time window in 205 patients. Eur J Neurol. 2013;20:865–71. https://doi.org/10.1111/ene.12069

    Article  CAS  PubMed  Google Scholar 

  7. Ovbiagele B, Kidwell CS, Starkman S, Saver JL. Potential role of neuroprotective agents for the treatment of patients with acute ischemic stroke. Curr Treat Option Ne. 2003;3:9–20. https://doi.org/10.1007/s11940-003-0027-7

    Article  Google Scholar 

  8. Luo Y, Tang H, Li H, Zhao R, Huang QH, Liu JM. Recent advances in the development of neuroprotective agents and therapeutic targets in the treatment of cerebral ischemia. Eur J Med Chem. 2019;162:132–46. https://doi.org/10.1016/j.ejmech.2018.11.014

    Article  CAS  PubMed  Google Scholar 

  9. Uzdensky AB. Photothrombotic stroke as a model of ischemic stroke. Transl Stroke Res. 2018;9:437–51. https://doi.org/10.1007/s12975-017-0593-8

    Article  PubMed  Google Scholar 

  10. Tewes B, Frehland B, Schepmann D, Schmidtke KU, Winckler T, Wunsch B. Conformationally constrained NR2B selective NMDA receptor antagonists derived from ifenprodil: Synthesis and biological evaluation of tetrahydro-3-benzazepine-1,7-diols. Bioorg Med Chem. 2010;18:8005–15. https://doi.org/10.1016/j.bmc.2010.09.026

    Article  CAS  PubMed  Google Scholar 

  11. Nakase T, Yamazaki T, Ogura N, Suzuki A, Nagata K. The impact of inflammation on the pathogenesis and prognosis of ischemic stroke. J Neurol Sci. 2008;271:104–9. https://doi.org/10.1016/j.jns.2008.03.020

    Article  CAS  PubMed  Google Scholar 

  12. Terao S, Yilmaz G, Stokes KY, Russell J, Ishikawa M, Kawase T, et al. Blood cell-derived RANTES mediates cerebral microvascular dysfunction, inflammation and tissue injury after focal ischemia-reperfusion. Stoke. 2008;39:2560–70. https://doi.org/10.1161/strokeaha.107.513150

    Article  CAS  Google Scholar 

  13. Pei J, You X, Fu Q. Inflammation in the pathogenesis of ischemic stroke. Front Biosci (Landmark Ed). 2015;20:772–83. https://doi.org/10.2741/4336

    Article  CAS  Google Scholar 

  14. Zeeli S, Weill T, Finkin-Groner E, Bejar C, Melamed M, Furman S, et al. Synthesis and biological evaluation of derivatives of indoline as highly potent antioxidant and antiinflammatory agents. J Med Chem. 2018;61:4004–19. https://doi.org/10.1021/acs.jmedchem.8b00001

    Article  CAS  PubMed  Google Scholar 

  15. Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Nueropharmacology. 2008;55:310–8. https://doi.org/10.1016/j.neuropharm.2008.01.005

    Article  CAS  Google Scholar 

  16. Benveniste H, Drejer J, Schousboe A, Diemer NH. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem. 1984;43:1369–74. https://doi.org/10.1111/j.1471-4159.1984.tb05396.x

    Article  CAS  PubMed  Google Scholar 

  17. Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: idenfying novel targets for neuroprotection. Prog Neurobiol 2014;115:157–88. https://doi.org/10.1016/j.pneurobio.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  18. Menniti F, Chenard B, Collins M, Ducat M, White F. CP-101,606, a potent neuroprotectant selective for forebrain neurons. Eur J Pharm. 1997;331:117–26. https://doi.org/10.1016/S0014-2999(97)10092-9

    Article  CAS  Google Scholar 

  19. Henter ID, De Sousa RT, Zarate CA. Glutamatergic modulators in depression. Harv Rev Psychiatry. 2018;26:307–19. https://doi.org/10.1097/hrp.0000000000000183

    Article  PubMed  PubMed Central  Google Scholar 

  20. Machado-Vieira R, Henter ID, Zarate CA. New targets for rapid antidepressant action. Prog Neurobiol. 2017;152:21–37. https://doi.org/10.1016/j.pneurobio.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  21. Stroebel D, Buhl DL, Knafels JD, Chanda PK, Gree M, Sciabola S, et al. A novel binding mode reveals two distinct classes of NMDA receptor GluN2B-selective antagonists. Mol Pharm. 2016;89:541–51. https://doi.org/10.1124/mol.115.103036

    Article  CAS  Google Scholar 

  22. Karakas E, Simorowski N, Furukawa H. Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature. 2011;475:249–53. https://doi.org/10.1038/nature10180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li J, Nie CB, Qian Y, Hu J, Li QF, Wang Q, et al. Design, synthesis and biological evaluation of novel 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole triazole derivatives as potent TRPV1 antagonists. Eur J Med Chem. 2019;178:433–45. https://doi.org/10.1016/j.ejmech.2019.06.007

    Article  CAS  PubMed  Google Scholar 

  24. Estopina-Duran S, Mclean EB, Donnelly LJ, Hockin BM, Taylor JE. Arylboronic acid catalyzed C-alkylation and allylation reactions using benzylic alcohols. Org Lett. 2020;22:7547–51. https://doi.org/10.1021/acs.orglett.0c02736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen ZW, Lin HX, Han J, Fang DM, Wang M, Liao J. Enantioselective copper-catalyzed electrophilic sulfenylation of cyclic imino esters. Org Lett 2021;23:1946–50. https://doi.org/10.1021/acs.orglett.1c03464

    Article  CAS  Google Scholar 

  26. Seliger J, Oestreich M. Dynamic kinetic resolution of alcohols by enantioselective silylation enabled by two orthogonal transition‐metal catalysts. Angew Chem Int Ed. 2020;60:247–51. https://doi.org/10.1002/anie.202010484

    Article  CAS  Google Scholar 

  27. Robert Z, Baumeister S, Dirk S, Wunsch B. Pyridine bioisosteres of potent GluN2B subunit containing NMDA receptor antagonists with benzo[7]annulene scaffold. Eur J Med Chem. 2018;157:397–04. https://doi.org/10.1016/j.ejmech.2018.08.003

    Article  CAS  Google Scholar 

  28. Temme L, Bechthold E, Schreiber JA, Gawaskar S, Schepmann D, Robaa D, et al. Negative allosteric modulators of the GluN2B NMDA receptor with phenylethylamine structure embedded in ring-expanded and ring-contracted scaffolds. Eur J Med Chem. 2020;190:112138 https://doi.org/10.1016/j.ejmech.2020.112138

    Article  CAS  PubMed  Google Scholar 

  29. Chaffey H, Chazot PL. NMDA receptor subtypes: structure, function and therapeutics. Anaesth Crit Care. Pain Med. 2008;19:183–01. https://doi.org/10.1016/j.cacc.2008.05.004.

    Article  Google Scholar 

  30. Tang N, Wu JH, Zhu H, Yan HL, Guo Y, Cai Y, et al. Genetic mutation of GluN2B protects brain cells against stroke damages. Mol Neurobiol. 2018;55:2979–90. https://doi.org/10.1007/s12035-017-0562-y

    Article  CAS  PubMed  Google Scholar 

  31. Zhang BY, Wang GR, Ning WH, Liu J, Yang S, Shen Y, et al. Electroacupuncture pretreatment elicits tolerance to cerebral ischemia/reperfusion through inhibition of the GluN2B/m-Calpain/p38 MAPK Proapoptotic Pathway. Neural Plast. 2020;2020:1–14. https://doi.org/10.1155/2020/8840675

    Article  CAS  Google Scholar 

  32. Huang L, Wang J, Chen L, Zhu C, Wu SB, Chu SH, et al. Design, synthesis, and evaluation of NDGA analogues as potential anti-ischemic stroke agents. Eur J Med Chem. 2018;143:1165–73. https://doi.org/10.1016/j.ejmech.2017.09.028

    Article  CAS  PubMed  Google Scholar 

  33. Abdel-Salam OM, Baiuomy AR, EI-Shenawy SM, Aribid MS. The anti-inflammatory effects of the phosphodiesterase inhibitor pentoxifylline in the rat. Pharmacol Res 2003;47:331–40. https://doi.org/10.1016/S1043-6618(03)00002-1

    Article  CAS  PubMed  Google Scholar 

  34. Gitto R, Luca LD, Ferro S, Buemi MR, Russo E, Sarro GD, et al. Synthesis and biological characterization of 3-substituted-1H-indoles as ligands of GluN2B-containing N-methyl-D-aspartate receptors. Bioorgan Med Chem. 2014;22:1040–8. https://doi.org/10.1016/j.bmc.2013.12.040

    Article  CAS  Google Scholar 

  35. Hu H, Li Z, Zhu X, Li RH, Lin JM, Peng J, et al. Gua Lou Gui Zhi decoction suppresses LPS-induced activation of the TLR4/NF-κB pathway in BV-2 murine microglial cells. Int J Mol Med. 2013;31:1327–32. https://doi.org/10.3892/ijmm.2013.1331

    Article  PubMed  Google Scholar 

  36. Durukan A, Tatlisumak T. Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharm Blochem Be. 2007;87:179–97. https://doi.org/10.1016/j.pbb.2007.04.015

    Article  CAS  Google Scholar 

  37. Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overview Structure, regµlation, and clinical imPlications. Neurobiol Dis. 2004;16:1–13. https://doi.org/10.1016/j.nbd.2003.12.016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was Supported by the Key Project of Natural Science Research in Universities of Anhui Province (No. KJ2020A0412), and the University-Enterprise Cooperative Project (No. 2020HZ062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaming Li or Xiaodong Ma.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, S., Jin, F., Li, J. et al. Design, synthesis and biological evaluation of indoline derivatives as multifunctional agents for the treatment of ischemic stroke. Med Chem Res 31, 805–818 (2022). https://doi.org/10.1007/s00044-022-02875-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02875-1

Keywords

Navigation