Skip to main content
Log in

Novel antimicrobial ciprofloxacin-pyridinium quaternary ammonium salts with improved physicochemical properties and DNA gyrase inhibitory activity

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

New ciprofloxacin/ quaternary ammonium salts 3a–e were designed and synthesized as potential antimicrobial agents. Most of the prepared derivatives showed promising dual antibacterial/antifungal activities. Compound 3e was the most potent and afforded vast spectrum antibacterial activity against S. aureus and most of the tested Gram-negative bacterial strains with MIC values ranging from 1.53–9.54 µg/mL. Moreover, ciprofloxacin and compound 3e induced DNA cleavage in S. aureus DNA gyrase and S. aureus TOPO IV DNA by 1 and 10 µM, respectively. In addition, docking study results agreed with results of DNA cleavage assays where all the tested compounds showed no additional significant interactions over the parent ciprofloxacin. On the other side, compounds 3e and 3f exhibited outstanding antifungal activity better than the reference itraconazole with MICs of 1.87, 4.67, and 11.22 µg/mL, respectively, against Candida. albicans. These data suggest the prevalence of another mechanism in addition to DNA gyrase circumvention, like metal chelation, antibiofilm, and/or improvement of lipophilicity and subsequent penetration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Xue Y, Xiao H, Zhang Y. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. Int J Mol Sci. 2015;16:3626–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Romani L. Immunity to fungal infections. Nat Rev Immunol. 2004;4:11–24.

    Article  CAS  Google Scholar 

  3. Cui S, Ren Y, Zhang S, Peng X, Damu G, Geng R et al. Synthesis and biological evaluation of a class of quinolone triazoles as potential antimicrobial agents and their interactions with calf thymus DNA. Bioorg Med Chem Lett. 2013;23:3267–72.

    Article  CAS  PubMed  Google Scholar 

  4. Wang X, Wan K, Zhou C. Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur J Med Chem. 2010;45:4631–9.

    Article  CAS  PubMed  Google Scholar 

  5. Walters J, Zhang F, Nakkula R. Mechanisms of fluoroquinolone transport by human neutrophils. Antimicrob Agents Chemother. 1999;43:2710–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Correia S, Poeta P, Hébraud M, Capelo JL, Igrejas G. Mechanisms of quinolone action and resistance: where do we stand. J Med Microbiol. 2017;66:551–9.

    Article  CAS  PubMed  Google Scholar 

  7. Gao C, Fan Y, Zhao F, Ren Q, Wu X, Chang L et al. Quinolone derivatives and their activities against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Med Chem. 2018;157:1081–95.

    Article  CAS  PubMed  Google Scholar 

  8. Sasaki E, Maesaki S, Miyazaki Y, Yanagihara K, Tomono K, Tashiro T et al. Synergistic effect of ofloxacin and fluconazole against azole-resistant Candida albicans. J Infect Chemother. 2000;6:151–4.

    Article  CAS  PubMed  Google Scholar 

  9. Nakajima R, Kitamura A, Someya K, Tanaka M, Sato K. In vitro and in vivo antifungal activities of DU-6859a, a fluoroquinolone, in combination with amphotericin B and fluconazole against pathogenic fungi. Antimicrob Agents Chemother. 1995;39:1517–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krug LM, Crawford J, Ettinger DS, Shapiro GI, Spigel D, Reiman T et al. Phase II multicenter trial of voreloxin as second-line therapy in chemotherapy-sensitive or refractory small cell lung cancer. J Thorac Oncol. 2011;6:384–6.

    Article  PubMed  Google Scholar 

  11. Schaeffer A, Anderson R. Efficacy and tolerability of norfloxacin vs. ciprofloxacin in complicated urinary tract infection. Urology. 1992;40:446–9.

    Article  CAS  PubMed  Google Scholar 

  12. Aliprandis E, Ciralsky J, Lai H, Herling I, Katz H. Comparative efficacy of topical moxifloxacin versus ciprofloxacin and vancomycin in the treatment of P. aeruginosa and ciprofloxacin-resistant MRSA keratitis in rabbits. Cornea. 2005;24:201–5.

    Article  PubMed  Google Scholar 

  13. Zhang G, Zhang S, Pan B, Liu X, Feng L. 4-Quinolone derivatives and their activities against Gram positive pathogens. Eur J Med Chem. 2018;143:710–23.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang X, Lionberger R, Davit B, Yu L. Utility of physiologically based absorption modeling in implementing quality by design in drug development. AAPS J. 2011;13:59–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Harder S, Fuhr U, Beermann D, Staib A. Ciprofloxacin absorption in different regions of the human gastrointestinal tract. Investigations with the hf-capsule. Br J Clin Pharmacol. 1990;30:35–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lehto P, Kivisto K, Neuvonen P. The effect of ferrous sulphate on the absorption of norfloxacin, ciprofloxacin and ofloxacin. Br J Clin Pharmacol. 1994;37:82–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dahan A, Miller J. The solubility–permeability interplay and its implications in formulation design and development for poorly soluble drugs. AAPS J. 2012;14:244–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grigoras A. Natural and synthetic polymeric antimicrobials with quaternary ammonium moieties: a review. Environ Chem Lett. 2021;19:3009–22.

    Article  CAS  Google Scholar 

  19. Wei L, Mi Y, Zhang J, Li Q, Dong F, Guo Z. Evaluation of quaternary ammonium chitosan derivatives differing in the length of alkyl side-chain: synthesis and antifungal activity. Int J Biol Macromol. 2019;129:1127–32.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang J, Tan W, Luan F, Yin X, Dong F, Li Q et al. Synthesis of quaternary ammonium salts of chitosan bearing halogenated acetate for antifungal and antibacterial activities. Polymers. 2018;530:10.

    Google Scholar 

  21. Gilbert P, Al-taae A. Antimicrobial activity of some alkyltrimethylammonium bromides. Lett Appl Microbiol. 1985;6:101–4.

    Article  Google Scholar 

  22. Zhao T, Sun G. Hydrophobicity and antimicrobial activities of quaternary pyridinium salts. J Appl Microbiol. 2008;104:824–30.

    Article  CAS  PubMed  Google Scholar 

  23. Garipov MR, Sabirova AE, Pavelyev RS, Shtyrlin NV, Lisovskaya SA, Bondar OV et al. Targeting pathogenic fungi, bacteria and fungal-bacterial biofilms by newly synthesized quaternary ammonium derivative of pyridoxine and terbinafine with dual action profile. Bioorg Chem. 2020;104:104306.

    Article  CAS  PubMed  Google Scholar 

  24. Fedorowicz J, Saczewski J, Konopacka A, Waleron K, Lejnowski D, Ciura K et al. Synthesis and biological evaluation of hybrid quinolone-based quaternary ammonium antibacterial agents. EJMC. 2019;179:576–90.

    CAS  Google Scholar 

  25. Insuasty D, Vidal O, Bernal A, Marquez E, Guzman J, Insuasty B et al. Antimicrobial activity of quinoline-based hydroxyimidazolium hybrids. Antibiotics. 2019;8:239.

    Article  CAS  PubMed Central  Google Scholar 

  26. Tischer M, Pradel G, Ohlsen K, Holzgrabe U. Quaternary ammonium salts and their antimicrobial potential: targets or nonspecific interactions. Chem Med Chem. 2012;7:22–31.

    Article  CAS  PubMed  Google Scholar 

  27. Diz M, Manresa A, Pinazo A, Erra P, Infante MaR. Synthesis, surface active properties and antimicrobial activity of new bis quaternary ammonium compounds. J Chem Soc Perkin Trans.1994;2:1871–6.

    Article  Google Scholar 

  28. Perinelli D, Petrelli D, Vitali L, Vllasaliu D, Cespi M, Giorgioni G et al. Quaternary ammonium surfactants derived from leucine and methionine: novel challenging surface active molecules with antimicrobial activity. J Mol Liq. 2019;283:249–56.

    Article  CAS  Google Scholar 

  29. Xu Z, Zhao S, Deng J, Wang Q, Lv Z. Ciprofloxacin-isatin hybrids and their antimycobacterial activities. J Heterocycl Chem. 2019;56:319–24.

    Article  CAS  Google Scholar 

  30. Alptüzün V, Parlar S, Taşlı H, Erciyas E. Synthesis and antimicrobial activity of some pyridinium salts. Molecules. 2009;14:5203–5215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wolfson J, Hooper D. Fluoroquinolone antimicrobial agents. Clin Microbiol Rev. 1989;2:378–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Okazaki K. Synthesis and antimicrobial characteristics of N,N’-hexamethylenebis (4-carbamoy1-1-decylpyridinium bromide). Biocontrol Sci. 2000;5:65–71.

    Article  Google Scholar 

  33. Alptüzün V, Parlar S, Taşlı H, Erciyas E. Synthesis and antimicrobial activity of some pyridinium salts. Molecules. 2009;14:5203–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Spanu P, Mannu A, Ulgheri F. An unexpected reaction of pyridine with acetyl chloride to give dihydropyridine and piperidine derivatives. Tetrahedron Lett. 2014;55:1939–42.

    Article  CAS  Google Scholar 

  35. Abdel-Aziz M, Park S-E, Abuo-Rahma GE-DAA, Sayed.M A, Kwon Y. Novel N-4-piperazinyl-ciprofloxacin-chalcone hybrids: Synthesis, physicochemical properties, anticancer and topoisomerase I and II inhibitory activity. Eur J Med Chem. 2013;69:427–38.

    Article  CAS  PubMed  Google Scholar 

  36. Raj H, Patel Y. Synthesis, characterization and antifungal activity of metal complexes of 8-hydroxyquinoline based azo dye. Adv Appl Sci Res. 2015;6:119–23.

    CAS  Google Scholar 

  37. You Z, Ran X, Dai Y, Ran Y. Clioquinol, an alternative antimicrobial agent against common pathogenic microbe. J Mycol Med. 2018;28:492–501.

    Article  CAS  PubMed  Google Scholar 

  38. Szczepaniak J, Cieślik W, Romanowicz A, Musioł R, Krasowska A. Blocking and dislocation of Candida albicans Cdr1p transporter by styrylquinolines. Int J Antimicrob Agents. 2017;50:171–6.

    Article  CAS  PubMed  Google Scholar 

  39. Bush NG, Diez-Santos I, Abbott LR, Maxwe AL. Quinolones: mechanism, lethality and their contributions to antibiotic resistance. Molecules. 2020;25:5662.

    Article  CAS  PubMed Central  Google Scholar 

  40. Dighe SN, Collet TA. Recent advances in DNA gyrase-targeted antimicrobial agents. Eur J Med Chem. 2020;199:112326.

    Article  CAS  PubMed  Google Scholar 

  41. Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol. 2010;2:a000414.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Mugumbate G, Overington JP. The relationship between target-class and the physicochemical properties of antibacterial drugs. Bioorg Med Chem. 2015;23:5218–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tao R, Uratsu SL, Dandekar AM. Sorbitol synthesis in transgenic tobacco with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. Plant Cell Physiol. 1995;36:525–32.

    Article  CAS  PubMed  Google Scholar 

  44. Gerwien F, Skrahina V, Kasper L, Hube B, Brunke S. Metals in fungal virulence. FEMS Microbiol. Rev. 2018;42:1–21.

    Article  CAS  Google Scholar 

  45. Pfaller MA, Gerarden T, Yu M, Wenzel RP. Influence of in vitro susceptibilitytesting conditions on the anti-candidal activity of LY121019. Diagn Microbiol Infect Dis. 1988;11:1–9.

    Article  CAS  PubMed  Google Scholar 

  46. Górka-Nieć W, Perlińska-Lenart U, Zembek P, Palamarczyk G, Kruszewska JS. Influence of sorbitol on protein production and glycosylation and cell wall formation in Trichoderma reesei. Fung. Bio. 2010;114:855–62.

    Article  CAS  Google Scholar 

  47. Leite MCA, De B Bezerra AP, De Sousa JP, Guerra FQS, Lima E, de O. Evaluation of antifungal activity and mechanism of action of citral against Candida albicans. Evid Based Complement Alternat. Med. 2014;2014:Article ID 378280.

    Article  Google Scholar 

  48. Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 2003;52:1–1.

    Article  CAS  PubMed  Google Scholar 

  49. Zuo R, Garrison AT, Basak A, Zhang P, Huigens RW, Ding Y. In vitro antifungal and antibiofilm activities of halogenated quinolone analogues against Candida albicans and Cryptococcus neoformans. Int J Antimicrob Agents. 2016;48:208–211.

    Article  CAS  PubMed  Google Scholar 

  50. Delattin N, Bardiot D, Marchand A, Chaltin P, De Brucker K, Cammue BPA et al. Identification of fungicidal 2,6-disubstituted quinolines with activity against Candida biofilms. Molecules. 2012;17:12243–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Breda SA, Jimenez-Kairuz AF, Manzo RH, Olivera ME. Solubility behavior and biopharmaceutical classification of novel high-solubility ciprofloxacin and norfloxacin pharmaceutical derivatives. Int J Pharm. 2009;371:106–113.

    Article  CAS  PubMed  Google Scholar 

  52. Ross D, Riley C. Aqueous solubilities of some variously substituted quinolone antimicrobials. Int J Pharm. 1990;63:237–250.

    Article  CAS  Google Scholar 

  53. Abuo-Rahma GE-DAA, Sarhan.H A, Gad GFM. Design, synthesis, antibacterial activity and physicochemical parameters of novel N-4-piperazinyl derivatives of norfloxacin. Bioorg Med Chem. 2009;17:3879–86.

    Article  CAS  Google Scholar 

  54. Salem MA, Ragab A, El-Khalafawy A, Makhlouf AH, AskarAhmed A, Ammar YA. Design, synthesis, in vitro antimicrobial evaluation and molecular docking studies of indol-2-one tagged with morpholinosulfonyl moiety as DNA gyrase inhibitors. Bioorg Chem. 2020;96:103619.

    Article  PubMed  CAS  Google Scholar 

  55. Bax BD, Chan PF, Eggleston DS, Fosberry A, Gentry DR, Gorrec F et al. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature. 2010;466:935–40.

    Article  PubMed  Google Scholar 

  56. Ghannam IAY, Abd El-Meguid EA, Ali IH, Sheir DH, El Kerdawy AM. Novel 2-arylbenzothiazole DNA gyrase inhibitors: Synthesis, antimicrobial evaluation, QSAR and molecular docking studies. Bioorg Chem. 2019;93:103373.

    Article  PubMed  CAS  Google Scholar 

  57. Ushiyama F, Amada H, Takeuchi T, Tanaka-Yamamoto N, Kanazawa H, Nakano K et al. Lead identification of 8-(Methylamino)-2-oxo-1,2-dihydroquinoline derivatives as DNA gyrase inhibitors: hit-to-lead generation involving thermodynamic evaluation. ACS Omega. 2020;5:10145–10159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Monk BC, Keniya MV. Roles for structural biology in the discovery of drugs and agrochemicals targeting sterol 14α-demethylases. JoF. 2021;7:67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sagatova AA, Keniya MV, Wilson RK, Monk BC, Tyndall JDA. Structural insights into binding of the antifungal drug fluconazole to saccharomyces cerevisiae lanosterol 14α-demethylase. Antimicrob Agents Chemother. 2015;59:4982–4989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Aziz HA, Moustafa GAI, Abbas SH, Derayea SM, Abuo-Rahma GE-DAA. New norfloxacin/nitric oxide donor hybrids: Synthesis and nitric oxide release measurement using a modified Griess colorimetric method. Eur J Chem. 2017;8:119–124.

    Article  CAS  Google Scholar 

  61. Bonev B, Hooper J, Parisot J. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J Antimicrob Chemother. 2008;61:1295–1301.

    Article  CAS  PubMed  Google Scholar 

  62. Nitiss JL, Soans E, Rogojina A, Seth A, Mishina M. Topoisomerase assays. Curr Protoc Pharmacol. 2012;57:1–7.

    Article  Google Scholar 

  63. Abate G, Aseffa A, Selassie A, Goshu S, Fekade B, WoldeMeskal D et al. Direct colorimetric assay for rapid detection of rifampin-resistant mycobacterium tuberculosis. J Clinic Microbiol. 2004;42:871–3.

    Article  CAS  Google Scholar 

  64. Vazquez JL, Merino S, Domenech O, Berlanga M, Vinas M, Montero MT et al. Determination of the partition coefficients of a homologous series of ciprofloxacin: influence of the N-4 piperazinyl alkylation on the antimicrobial activity. Int J Pharm. 2001;220:53–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. Rehab Mahmoud Abdel-Baky, professor of Microbiology, Faculty of Pharmacy, Minia University, for her great help in performing antibacterial and antifungal screening studies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samar H. Abbas or Gamal El-Din A. Abuo-Rahma.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezelarab, H.A.A., Abbas, S.H., Abourehab, M.A.S. et al. Novel antimicrobial ciprofloxacin-pyridinium quaternary ammonium salts with improved physicochemical properties and DNA gyrase inhibitory activity. Med Chem Res 30, 2168–2183 (2021). https://doi.org/10.1007/s00044-021-02798-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02798-3

Keywords

Navigation