Skip to main content

Advertisement

Log in

Isatin derivatives as a new class of aldose reductase inhibitors with antioxidant activity

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In this work, isatin was employed as the scaffold to design aldose reductase inhibitors with antioxidant activity. Most of the isatin derivatives were proved to be excellent in the inhibition of aldose reductase (ALR2) with IC50 values at submicromolar level, and (E)-2-(5-(4-methoxystyryl)-2,3-dioxoindolin-1-yl) acetic acid (9g) was identified as the most effective with an IC50 value of 0.015 μM. Moreover, compounds 9ah with styryl side chains at the C5 position of isatin showed potent antioxidant activity. Particularly, the phenolic compound 9h demonstrated similar antioxidant activity with the well-known antioxidant Trolox. Structure-activity relationship and molecular docking studies showed that the acetic acid group at N1 and C5 p-hydroxystyryl side chain were the key structures to increase the aldose reductase inhibitory activity and antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hao X, Han Z, Li Y, Li C, Wang X, Zhang X, et al. Synthesis and structure–activity relationship studies of phenolic hydroxyl derivatives based on quinoxalinone as aldose reductase inhibitors with antioxidant activity. Bioorg Med Chem Lett. 2017;27:887–92

    Article  CAS  Google Scholar 

  2. Maccari R, Ottanà R. Targeting aldose reductase for the treatment of diabetes complications and inflammatory diseases: new insights and future directions. J Med Chem. 2015;58:2047–67

    Article  CAS  Google Scholar 

  3. Alexiou P, Pegklidou K, Chatzopoulou M, Nicolaou I, Demopoulos VJ. Aldose reductase enzyme and its implication to major health problems of the 21st century. Curr Med Chem. 2009;16:734–52

    Article  CAS  Google Scholar 

  4. Chen H, Zhang X, Zhang X, Fan Z, Liu W, Lei Y, et al. Dihydrobenzoxazinone derivatives as aldose reductase inhibitors with antioxidant activity. Bioorg Med Chem. 2020;28:115699

    Article  CAS  Google Scholar 

  5. Quattrini L, La Motta C. Aldose reductase inhibitors: 2013-present. Expert Opin Ther Pat. 2019;29:199–213

    Article  CAS  Google Scholar 

  6. Kador PF. The role of aldose reductase in the development of diabetic complications. Med Res Rev. 1988;8:325–52

    Article  CAS  Google Scholar 

  7. La Motta C, Sartini S, Mugnaini L, Simorini F, Taliani S, Salerno S, et al. Pyrido[1,2-a]pyrimidin-4-one derivatives as a novel class of selective aldose reductase inhibitors exhibiting antioxidant activity. J Med Chem. 2007;50:4917–27

    Article  CAS  Google Scholar 

  8. Han Z, Hao X, Ma B, Zhu C. A series of pyrido[2,3-b]pyrazin-3(4H)-one derivatives as aldose reductase inhibitors with antioxidant activity. Eur J Med Chem. 2016;121:308–17

    Article  CAS  Google Scholar 

  9. Da Settimo F, Primofiore G, La Motta C, Sartini S, Taliani S, Simorini F, et al. Naphtho [1, 2-d] isothiazole acetic acid derivatives as a novel class of selective aldose reductase inhibitors. J Med Chem. 2005;48:6897–907

    Article  CAS  Google Scholar 

  10. Maccari R, Vitale RM, Ottanà R, Rocchicciol M, Marrazzo A, Cardile V, et al. Structure-activity relationships and molecular modelling of new 5-arylidene-4-thiazolidinone derivatives as aldose reductase inhibitors and potential anti-inflammatory agents. Eur J Med Chem. 2014;81:1–14

    Article  CAS  Google Scholar 

  11. Wiernsperger NF. Oxidative stress as a therapeutic target in diabetes: revisiting the controversy. Diabetes Metab. 2003;29:579–85

    Article  CAS  Google Scholar 

  12. Farooqui AA. Inflammation and oxidative stress in neurological disorders. Springer International Publishing, 2014

  13. Tang WH, Martin KA, Hwa J. Aldose reductase, oxidative stress, and diabetic mellitus. Front Pharm. 2012;3:87

    Article  CAS  Google Scholar 

  14. Drel VR, Pacher P, Ali TK, Shin J, Julius U, El-Remessy AB, et al. Aldose reductase inhibitor fidarestat counteracts diabetes-associated cataract formation, retinal oxidative-nitrosative stress, glial activation, and apoptosis. Int J Mol Med. 2008;21:667–76

    PubMed  CAS  Google Scholar 

  15. Drel VR, Pacher P, Stevens MJ, Obrosova IG. Aldose reductase inhibition counteracts nitrosative stress and poly (ADP-ribose) polymerase activation in diabetic rat kidney and high-glucose-exposed human mesangial cells. Free Radic Biol Med. 2006;40:1454–65

    Article  CAS  Google Scholar 

  16. Ji Y, Chen X, Chen H, Zhang X, Fan Z, Xie L, et al. Designing of acyl sulphonamide based quinoxalinones as multifunctional aldose reductase inhibitors. Bioorg Med Chem. 2019;27:1658–69

    Article  CAS  Google Scholar 

  17. Hamada Y, Araki N, Horiuchi S, Hotta N. Role of polyol pathway in nonenzymatic glycation. Nephrol, Dial, Transpl. 1996;11:95–98

    Article  CAS  Google Scholar 

  18. Chung SSM, Chung SK. Genetic analysis of aldose reductase in diabetic complications. Curr Med Chem. 2003;10:1375–87

    Article  CAS  Google Scholar 

  19. Van Zandt MC, Jones ML, Gunn DE, Geraci LS, Jones JH, Sawicki DR, et al. Discovery of 3-[(4, 5, 7-trifluorobenzothiazol-2-yl) methyl] indole-N-acetic acid (lidorestat) and congeners as highly potent and selective inhibitors of aldose reductase for treatment of chronic diabetic complications. J Med Chem. 2005;48:3141–52

  20. Mylari BL, Armento SJ, Beebe DA, Conn EL, Coutcher JB, Dina MS, et al. A highly selective, non-hydantoin, non-carboxylic acid inhibitor of aldose reductase with potent oral activity in diabetic rat models: 6-(5-chloro-3-methylbenzofuran-2-sulfonyl)-2-H-pyridazin-3-one. J Med Chem. 2003;46:2283–6

    Article  CAS  Google Scholar 

  21. Steele JW, Faulds D, Goa KL. Epalrestat. Drugs Aging. 1993;3:532–55

    Article  CAS  Google Scholar 

  22. Maccari R, Ottanà R. 2, 4-Thiazolidinedione and 2-thioxo-4-thiazolidinone derivatives as aldose reductase inhibitors in the search for drugs to prevent long-term diabetes complications. Adv Mol Mech Pharmacol Diabetic Complications. 2010;219–45

  23. Qin X, Hao X, Han H, Zhu S, Yang Y, Wu B, et al. Design and synthesis of potent and multifunctional aldose reductase inhibitors based on quinoxalinones. J Med Chem. 2015;58:1254–67

    Article  CAS  Google Scholar 

  24. Barski OA, Gabbay KH, Grimshaw CE, Bohren KM. Mechanism of human aldehyde reductase: characterization of the active site pocket. Biochemistry. 1995;34:11264–75

    Article  CAS  Google Scholar 

  25. Wang J, Yun D, Yao J, Fu W, Huang F, Chen L, et al. Design, synthesis and QSAR study of novel isatin analogues inspired michael acceptor as potential anticancer compounds. Eur J Med Chem. 2018;144:493–503

    Article  CAS  Google Scholar 

  26. Zhang Q, Teng Y, Yuan Y, Ruan T, Wang Q, Gao X, et al. Synthesis and cytotoxic studies of novel 5-phenylisatin derivatives and their anti-migration and anti-angiogenic evaluation. Eur J Med Chem. 2018;156:800–14

    Article  CAS  Google Scholar 

  27. Andreani A, Burnelli S, Granaiola M, Leoni A, Locatelli A, Morigi R, et al. New isatin derivatives with antioxidant activity. Eur J Med Chem. 2010;45:1374–8

    Article  CAS  Google Scholar 

  28. Zuo A-R, Dong H-H, Yu Y-Y, Shu Q-L, Zheng L-X, Yu X-Y, et al. The antityrosinase and antioxidant activities of flavonoids dominated by the number and location of phenolic hydroxyl groups. Chin Med. 2018;13:1–12

    Article  CAS  Google Scholar 

  29. Wang C, White A, Schwartz S, Alluri S, Cattabiani T, Zhang L, et al. Novel synthesis and functionalization of ortho–ortho disubstituted biphenyls and a highly condensed novel heterocycle using radical cyclization reaction. Tetrahedron. 2012;68:9750–62

    Article  CAS  Google Scholar 

  30. Joule JA. Thiophenes from viktor meyer to poly (thiophene) some reactions and synthesis. Phosphorus Sulfur Silicon Relat Elem. 2013;188:287–316

    Article  CAS  Google Scholar 

  31. Zhou N, Polozov AM, O’Connell M, Burgeson J, Yu P, Zeller W, et al. 1,7-Disubstituted oxyindoles are potent and selective EP 3 receptor antagonists. Bioorg Med Chem Lett. 2010;20:2658–64

    Article  CAS  Google Scholar 

  32. El‐Kabbani O, Ramsland P, Darmanin C, Chung RPT, Podjarny A. Structure of human aldose reductase holoenzyme in complex with Statil: An approach to structure‐based inhibitor design of the enzyme. Proteins: Struct, Funct, Bioinf. 2003;50:230–8

    Article  CAS  Google Scholar 

  33. Hayman S, Kinoshita JH. Isolation and properties of lens aldose reductase. J Biol Chem. 1965;240:877–82

    Article  CAS  Google Scholar 

  34. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958;181:1199–200

    Article  CAS  Google Scholar 

  35. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8

    Article  CAS  Google Scholar 

  36. Liu L, Liu Y, Cui J, Liu H, Liu Y-B, Qiao W-L, et al. Oxidative stress induces gastric submucosal arteriolar dysfunction in the elderly. World J Gastroenterol. 2013;19:9439–46

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant no. 21572021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Ma.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Chen, H., Zhang, X. et al. Isatin derivatives as a new class of aldose reductase inhibitors with antioxidant activity. Med Chem Res 30, 1588–1602 (2021). https://doi.org/10.1007/s00044-021-02751-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02751-4

Keywords

Navigation