Skip to main content

Advertisement

Log in

Synthesis, docking, and biological evaluation of thiazolidinone derivatives against hepatitis C virus genotype 4a

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Hepatitis C virus (HCV) genotype 4a (GT4a) is prevalent in Egypt. It did not gain the necessary scientific focus despite its high resistance. Since the crystal structure NS5B (RNA-dependent RNA polymerase) of HCV GT4a has not been resolved until now, homology modeling was conducted to build and validate the 3D model of the enzyme. Ligand binding sites including the allosteric thumb II pocket were detected and used in lead optimization. Sixty new 4-thiazolidinone derivatives have been virtually designed and docked into thumb II site of HCV NS5B GT4a using rigid docking approach. Eighteen compounds (7a–r) that show good docking scores were synthesized and tested in vitro against NS5B GT4a. Compounds 7b and 7n showed the best inhibitory activity (IC50 = 0.338 and 0.342 µM, respectively). Compounds 7a, 7b, 7c, 7d, 7k, 7n, 7q, and 7r that have IC50 values less than 2 µM were assessed for cellular anti-HCV GT4a activity using human hepatoma cell line (Huh 7.5). The percentages of viral growth inhibition are between 79.67 and 94.77%. Compound 7b is the most active in the in vitro and cellular assays and could be considered a potential new lead for future anti-HCV studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Scheme 2
Scheme 3
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. WHO. Hepatitis C fact sheet. 2019. https://www.who.int/news-room/fact-sheets/detail/hepatitis-c. Accessed July 29 2020.

  2. Jafri SM, Gordon SC. Epidemiology of hepatitis C. Clin Liver Dis. 2018;12:140–2. https://doi.org/10.1002/cld.783

    Article  Google Scholar 

  3. Alexopoulou A, Karayiannis P. Interferon-based combination treatment for chronic hepatitis C in the era of direct acting antivirals. Ann Gastroenterol. 2015;28:55–65.

    PubMed  PubMed Central  Google Scholar 

  4. Smith K. Sofosbuvir: a new milestone in HCV treatment? Nat Rev Gastroenterol Hepatol. 2013;10:258- https://doi.org/10.1038/nrgastro.2013.60

    Article  PubMed  Google Scholar 

  5. Götte M, Feld JJ. Direct-acting antiviral agents for hepatitis C: structural and mechanistic insights. Nat Rev Gastroenterol Hepatol. 2016;13:338–51. https://doi.org/10.1038/nrgastro.2016.60

    Article  CAS  PubMed  Google Scholar 

  6. Legrand-Abravanel F, Henquell C, Le Guillou-Guillemette H, Balan V, Mirand A, Dubois M, et al. Naturally occurring substitutions conferring resistance to hepatitis C virus polymerase inhibitors in treatment-naive patients infected with genotypes 1-5. Antivir Ther. 2009;14:723–30.

    CAS  PubMed  Google Scholar 

  7. El-Tahan RR, Ghoneim AM, Zaghloul H. Dissection of two drug-targeted regions of Hepatitis C virus subtype 4a infecting Egyptian patients. Virus Genes. 2020. https://doi.org/10.1007/s11262-020-01776-y.

  8. Bartenschlager R, Lohmann V, Penin F. The molecular and structural basis of advanced antiviral therapy for hepatitis C virus infection. Nat Rev Microbiol. 2013;11:482–96. https://doi.org/10.1038/nrmicro3046

    Article  CAS  PubMed  Google Scholar 

  9. Di Maio VC, Cento V, Mirabelli C, Artese A, Costa G, Alcaro S, et al. Hepatitis C virus genetic variability and the presence of NS5B resistance-associated mutations as natural polymorphisms in selected genotypes could affect the response to NS5B inhibitors. Antimicrob Agents Chemother. 2014;58:2781–97. https://doi.org/10.1128/aac.02386-13

    Article  PubMed  PubMed Central  Google Scholar 

  10. Watkins WJ. Evolution of HCV NS5B non-nucleoside inhibitors. In: Sofia M, editor. HCV: the journey from discovery to a cure. Cham: Springer; 2019. p. 171–91.

  11. Li H, Tatlock J, Linton A, Gonzalez J, Borchardt A, Dragovich P, et al. Identification and structure-based optimization of novel dihydropyrones as potent HCV RNA polymerase inhibitors. Bioorg Med Chem Lett. 2006;16:4834–8. https://doi.org/10.1016/j.bmcl.2006.06.065

    Article  CAS  PubMed  Google Scholar 

  12. Li P, Dorsch W, Lauffer DJ, Bilimoria D, Chauret N, Court JJ, et al. Discovery of novel allosteric HCV NS5B inhibitors. 2. lactam-containing thiophene carboxylates. ACS Med Chem Lett. 2017;8:251–5. https://doi.org/10.1021/acsmedchemlett.6b00479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yan S, Appleby T, Larson G, Wu JZ, Hamatake R, Hong Z, et al. Structure-based design of a novel thiazolone scaffold as HCV NS5B polymerase allosteric inhibitors. Bioorg Med Chem Lett. 2006;16:5888–91. https://doi.org/10.1016/j.bmcl.2006.08.056

    Article  CAS  PubMed  Google Scholar 

  14. Li H, Tatlock J, Linton A, Gonzalez J, Jewell T, Patel L, et al. Discovery of (R)-6-cyclopentyl-6-(2-(2,6-diethylpyridin-4-yl)ethyl)-3-((5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)methyl)-4-hydroxy-5,6-dihydropyran-2-one (PF-00868554) as a potent and orally available hepatitis C virus polymerase inhibitor. J Med Chem. 2009;52:1255–8. https://doi.org/10.1021/jm8014537

    Article  CAS  PubMed  Google Scholar 

  15. Lazerwith SE, Lew W, Zhang J, Morganelli P, Liu Q, Canales E, et al. Discovery of GS-9669, a thumb site II non-nucleoside inhibitor of NS5B for the treatment of genotype 1 chronic hepatitis C infection. J Med Chem. 2014;57:1893–901. https://doi.org/10.1021/jm401420j

    Article  CAS  PubMed  Google Scholar 

  16. Shi ST, Herlihy KJ, Graham JP, Nonomiya J, Rahavendran SV, Skor H, et al. Preclinical characterization of PF-00868554, a potent nonnucleoside inhibitor of the hepatitis C virus RNA-dependent RNA polymerase. Antimicrob Agents Chemother. 2009;53:2544–52. https://doi.org/10.1128/aac.01599-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ding Y, Smith KL, Varaprasad CVNS, Chang E, Alexander J, Yao N. Synthesis of thiazolone-based sulfonamides as inhibitors of HCV NS5B polymerase. Bioorg Med Chem Lett. 2007;17:841–5. https://doi.org/10.1016/j.bmcl.2006.08.104

    Article  CAS  PubMed  Google Scholar 

  18. Babaoglu K, Page MA, Jones VC, McNeil MR, Dong C, Naismith JH, et al. Novel inhibitors of an emerging target in Mycobacterium tuberculosis; substituted thiazolidinones as inhibitors of dTDP-rhamnose synthesis. Bioorg Med Chem Lett. 2003;13:3227–30. https://doi.org/10.1016/S0960-894X(03)00673-5

    Article  CAS  PubMed  Google Scholar 

  19. Küçükgüzel G, Kocatepe A, De Clercq E, Şahin F, Güllüce M. Synthesis and biological activity of 4-thiazolidinones, thiosemicarbazides derived from diflunisal hydrazide. Eur J Med Chem. 2006;41:353–9. https://doi.org/10.1016/j.ejmech.2005.11.005

    Article  CAS  PubMed  Google Scholar 

  20. Ottanà R, Carotti S, Maccari R, Landini I, Chiricosta G, Caciagli B, et al. In vitro antiproliferative activity against human colon cancer cell lines of representative 4-thiazolidinones. Part I. Bioorg Med Chem Lett. 2005;15:3930–3. https://doi.org/10.1016/j.bmcl.2005.05.093

    Article  CAS  PubMed  Google Scholar 

  21. Kumar A, Rajput CS, Bhati SK. Synthesis of 3-[4’-(p-chlorophenyl)-thiazol-2’-yl]-2-[(substituted azetidinone/thiazolidinone)-aminomethyl]-6-bromoquinazolin-4-ones as anti-inflammatory agent. Bioorg Med Chem. 2007;15:3089–96. https://doi.org/10.1016/j.bmc.2007.01.042.

    Article  CAS  PubMed  Google Scholar 

  22. Rawal RK, Tripathi R, Katti SB, Pannecouque C, De Clercq E. Design, synthesis, and evaluation of 2-aryl-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Bioorg Medicinal Chem. 2007;15:1725–31. https://doi.org/10.1016/j.bmc.2006.12.003

    Article  CAS  Google Scholar 

  23. Çakır G, Küçükgüzel İ, Guhamazumder R, Tatar E, Manvar D, Basu A, et al. Novel 4-thiazolidinones as non-nucleoside inhibitors of hepatitis C virus NS5B RNA-dependent RNA polymerase. Arch Pharm. 2015;348:10–22. https://doi.org/10.1002/ardp.201400247

    Article  CAS  Google Scholar 

  24. Küçükgüzel İ, Satılmış G, Gurukumar KR, Basu A, Tatar E, Nichols DB, et al. 2-Heteroarylimino-5-arylidene-4-thiazolidinones as a new class of non-nucleoside inhibitors of HCV NS5B polymerase. Eur J Med Chem. 2013;69:931–41. https://doi.org/10.1016/j.ejmech.2013.08.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2018;46:2699- https://doi.org/10.1093/nar/gky092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu D, Zhang Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J. 2011;101:2525–34. https://doi.org/10.1016/j.bpj.2011.10.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–W303. https://doi.org/10.1093/nar/gky427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barreca ML, Iraci N, Manfroni G, Cecchetti V. Allosteric inhibition of the hepatitis C virus NS5B polymerase: in silico strategies for drug discovery and development. Future Med Chem. 2011;3:1027–55. https://doi.org/10.4155/fmc.11.53

    Article  CAS  PubMed  Google Scholar 

  29. Shih M-H, Wu C-L. Efficient syntheses of thiadiazoline and thiadiazole derivatives by the cyclization of 3-aryl-4-formylsydnone thiosemicarbazones with acetic anhydride and ferric chloride. Tetrahedron. 2005;61:10917–25. https://doi.org/10.1016/j.tet.2005.08.107

    Article  CAS  Google Scholar 

  30. Vicini P, Geronikaki A, Anastasia K, Incerti M, Zani F. Synthesis and antimicrobial activity of novel 2-thiazolylimino-5-arylidene-4-thiazolidinones. Bioorg Medicinal Chem. 2006;14:3859–64. https://doi.org/10.1016/j.bmc.2006.01.043

    Article  CAS  Google Scholar 

  31. Vicini P, Geronikaki A, Incerti M, Zani F, Dearden J, Hewitt M. 2-Heteroarylimino-5-benzylidene-4-thiazolidinones analogues of 2-thiazolylimino-5-benzylidene-4-thiazolidinones with antimicrobial activity: synthesis and structure–activity relationship. Bioorg Med Chem. 2008;16:3714–24. https://doi.org/10.1016/j.bmc.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  32. Behbehani H, Ibrahim HM. 4-Thiazolidinones in heterocyclic synthesis: synthesis of novel enaminones, azolopyrimidines and 2-arylimino-5-arylidene-4-thiazolidinones. Molecules. 2012;17:6362–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cousins KR. ChemDraw Ultra 9.0. CambridgeSoft, 100 CambridgePark Drive, Cambridge, MA 02140. www. cambridgesoft.com. See Web site for pricing options. J Am Chem Soc. 2005;127:4115–6. https://doi.org/10.1021/ja0410237.

    Article  CAS  Google Scholar 

  34. Tu G, Li S, Huang H, Li G, Xiong F, Mai X, et al. Novel aminopeptidase N inhibitors derived from 1,3,4-thiadiazole scaffold. Bioorg Med Chem. 2008;16:6663–8. https://doi.org/10.1016/j.bmc.2008.05.081

    Article  CAS  PubMed  Google Scholar 

  35. Sun J-M, Kim S-J, Kim G-W, Rhee J-K, Kim ND, Jung H, et al. Inhibition of hepatitis C virus replication by monascus pigment derivatives that interfere with viral RNA polymerase activity and the mevalonate biosynthesis pathway. J Antimicrob Chemother. 2011;67:49–58. https://doi.org/10.1093/jac/dkr432

    Article  CAS  PubMed  Google Scholar 

  36. Hassan GS, Georgey HH, Mohammed EZ, Omar FA. Anti-hepatitis-C virus activity and QSAR study of certain thiazolidinone and thiazolotriazine derivatives as potential NS5B polymerase inhibitors. Eur J Med Chem. 2019;184:111747–62. https://doi.org/10.1016/j.ejmech.2019.111747

    Article  CAS  PubMed  Google Scholar 

  37. Howe AYM, Bloom J, Baldick CJ, Benetatos CA, Cheng H, Christensen JS, et al. Novel nonnucleoside inhibitor of hepatitis C virus RNA-dependent RNA polymerase. Antimicrob Agents Chemother. 2004;48:4813–21. https://doi.org/10.1128/aac.48.12.4813-4821.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ye J, McGinnis S, Madden TL. BLAST: improvements for better sequence analysis. Nucleic acids Res. 2006;34:6–9. https://doi.org/10.1093/nar/gkl164

    Article  CAS  Google Scholar 

  39. Nero TL, Parker MW, Morton CJ. Protein structure and computational drug discovery. Biochem Soc Trans. 2018;46:1367–79. https://doi.org/10.1042/bst20180202

    Article  CAS  PubMed  Google Scholar 

  40. Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl MT. Conformer generation with OMEGA: Algorithm and validation using high quality structures from the protein databank and cambridge structural database. J Chem Inf Model. 2010;50:572–84. https://doi.org/10.1021/ci100031x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McGann M. FRED and HYBRID docking performance on standardized datasets. J Comput Aided Mol Des. 2012;26:897–906. https://doi.org/10.1007/s10822-012-9584-8

    Article  CAS  PubMed  Google Scholar 

  42. BIOVIA. Discovery studio Visualizer v19.1.0.18287. San Diego: Dassault Systèmes 2019.

  43. DeLano WL. Pymol: an open-source molecular graphics tool. CCP4 Newsl Protein Crystallogr. 2002;40:82–92.

    Google Scholar 

Download references

Acknowledgements

We are grateful for OpenEye Scientific Software for supporting the academic license granted to MAE laboratory. We also thank Dr. Khaled M. Elokely, Tanta University, for his help in analyzing the computational data and Dr. Ahmed E. Goda, Tanta University, for his help in the biological studies.

Author contributions

MAE contributed to conceptualization and design. ASA-B collected the data and carried out the experimental section. All authors analyzed the data, wrote, and revised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed S. Al-Behery.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Behery, A.S., Elberembally, K.M. & Eldawy, M.A. Synthesis, docking, and biological evaluation of thiazolidinone derivatives against hepatitis C virus genotype 4a. Med Chem Res 30, 1151–1165 (2021). https://doi.org/10.1007/s00044-021-02721-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02721-w

Keywords

Navigation