Skip to main content
Log in

Synthesis of macrocyclic α-ketoamide as a selective and reversible immunoproteasome inhibitor

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In recent years, the human immunoproteasome has emerged as an attractive therapeutic target for various diseases, leading to a growing interest in the discovery of immunoproteasome inhibitors that selectively target specific subunits. Herein we report the design, synthesis, and evaluation of a new immunoproteasome inhibitor that feature a macrocyclic ring containing an internal α-ketoamide warhead. This compound is a selective and reversible inhibitor of immunoproteasome subunits β1i and β5i and shows essentially no inhibition of constitutive proteasome subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2

Similar content being viewed by others

Abbreviations

UPS:

ubiquitin-proteasome system;

CP:

core particle;

RP:

regulatory particle;

LMP2:

low-molecular mass protein-2;

MECL1:

multicatalytic endopeptidase complex-like 1;

LMP7:

low-molecular mass protein-7;

DMP:

Dess-Martin periodinane;

HBTU:

N,N,N′,N′-tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate;

IIDQ:

2-isobutoxy-1-isobutoxycarbonyl-1,2-dihydroquin-oline;

NOE:

nuclear overhauser effect;

EDC:

N-ethyl-N′-(3-dimethylaminopropyl)carbodiimide.

References

  1. Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002;82(2):373–428. https://doi.org/10.1152/physrev.00027.2001

    Article  CAS  PubMed  Google Scholar 

  2. Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem. 2009;78:477–513. https://doi.org/10.1146/annurev.biochem.78.081507.101607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ebstein F, Kloetzel PM, Kruger E, Seifert U. Emerging roles of immunoproteasomes beyond MHC class I antigen processing. Cell Mol Life Sci. 2012;69(15):2543–58. https://doi.org/10.1007/s00018-012-0938-0

    Article  CAS  PubMed  Google Scholar 

  4. Groettrup M, Khan S, Schwarz K, Schmidtke G. Interferon-gamma inducible exchanges of 20S proteasome active site subunits: why? Biochimie. 2001;83(3–4):367–72

    Article  CAS  Google Scholar 

  5. Manasanch EE, Orlowski RZ. Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol. 2017;14(7):417–33. https://doi.org/10.1038/nrclinonc.2016.206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Basler M, Mundt S, Bitzer A, Schmidt C, Groettrup M. The immunoproteasome: a novel drug target for autoimmune diseases. Clin Exp Rheumatol. 2015;33(4 Suppl 92):S74–9

    PubMed  Google Scholar 

  7. Kaur G, Batra S. Emerging role of immunoproteasomes in pathophysiology. Immunol Cell Biol. 2016;94(9):812–20. https://doi.org/10.1038/icb.2016.50

    Article  CAS  PubMed  Google Scholar 

  8. Ettari R, Previti S, Bitto A, Grasso S, Zappala M. Immunoproteasome-Selective Inhibitors: a Promising Strategy to Treat Hematologic Malignancies, Autoimmune and Inflammatory Diseases. Curr Med Chem. 2016;23(12):1217–38

    Article  CAS  Google Scholar 

  9. Kisselev AF, Groettrup M. Subunit specific inhibitors of proteasomes and their potential for immunomodulation. Curr Opin Chem Biol. 2014;23:16–22. https://doi.org/10.1016/j.cbpa.2014.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huber EM, Basler M, Schwab R, Heinemeyer W, Kirk CJ, Groettrup M, et al. Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Cell. 2012;148(4):727–38. https://doi.org/10.1016/j.cell.2011.12.030

    Article  CAS  PubMed  Google Scholar 

  11. de Bruin G, Huber EM, Xin BT, van Rooden EJ, Al-Ayed K, Kim KB, et al. Structure-based design of beta1i or beta5i specific inhibitors of human immunoproteasomes. J Med Chem. 2014;57(14):6197–209. https://doi.org/10.1021/jm500716s

    Article  CAS  PubMed  Google Scholar 

  12. Bakas NA, Schultz CR, Yco LP, Roberts CC, Chang CA, Bachmann AS, et al. Immunoproteasome inhibition and bioactivity of thiasyrbactins. Bioorg Med Chem. 2018;26(2):401–12. https://doi.org/10.1016/j.bmc.2017.11.048

    Article  CAS  PubMed  Google Scholar 

  13. Dubiella C, Baur R, Cui H, Huber EM, Groll M. Selective Inhibition of the Immunoproteasome by Structure-Based Targeting of a Non-catalytic Cysteine. Angew Chem Int Ed Engl. 2015;54(52):15888–91. https://doi.org/10.1002/anie.201506631

    Article  CAS  PubMed  Google Scholar 

  14. Singh PK, Fan H, Jiang X, Shi L, Nathan CF, Lin G. Immunoproteasome beta5i-Selective Dipeptidomimetic Inhibitors. ChemMedChem. 2016;11(19):2127–31. https://doi.org/10.1002/cmdc.201600384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fan H, Angelo NG, Warren JD, Nathan CF, Lin G. Oxathiazolones Selectively Inhibit the Human Immunoproteasome over the Constitutive Proteasome. ACS Med Chem Letters. 2014;5(4):405–10. https://doi.org/10.1021/ml400531d

    Article  CAS  Google Scholar 

  16. Sosic I, Gobec M, Brus B, Knez D, Zivec M, Konc J, et al. Nonpeptidic Selective Inhibitors of the Chymotrypsin-Like (beta5 i) Subunit of the Immunoproteasome. Angew Chem Int Ed Engl. 2016;55(19):5745–8. https://doi.org/10.1002/anie.201600190

    Article  CAS  PubMed  Google Scholar 

  17. Ho YK, Bargagna-Mohan P, Wehenkel M, Mohan R, Kim KB. LMP2-specific inhibitors: chemical genetic tools for proteasome biology. Chem Biol. 2007;14(4):419–30. https://doi.org/10.1016/j.chembiol.2007.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuhn DJ, Hunsucker SA, Chen Q, Voorhees PM, Orlowski M, Orlowski RZ. Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood. 2009;113(19):4667–76. https://doi.org/10.1182/blood-2008-07-171637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Basler M, Lauer C, Moebius J, Weber R, Przybylski M, Kisselev AF, et al. Why the structure but not the activity of the immunoproteasome subunit low molecular mass polypeptide 2 rescues antigen presentation. J Immunol. 2012;189(4):1868–77. https://doi.org/10.4049/jimmunol.1103592

    Article  CAS  PubMed  Google Scholar 

  20. Huber EM, de Bruin G, Heinemeyer W, Paniagua Soriano G, Overkleeft HS, Groll M. Systematic Analyses of Substrate Preferences of 20S Proteasomes Using Peptidic Epoxyketone Inhibitors. J Am Chem Soc. 2015;137(24):7835–42. https://doi.org/10.1021/jacs.5b03688

    Article  CAS  PubMed  Google Scholar 

  21. Johnson HWB, Anderl JL, Bradley EK, Bui J, Jones J, Arastu-Kapur S, et al. Discovery of Highly Selective Inhibitors of the Immunoproteasome Low Molecular Mass Polypeptide 2 (LMP2) Subunit. ACS Med Chem Letters. 2017;8(4):413–7. https://doi.org/10.1021/acsmedchemlett.6b00496

    Article  CAS  Google Scholar 

  22. Schrader J, Henneberg F, Mata RA, Tittmann K, Schneider TR, Stark H, et al. The inhibition mechanism of human 20S proteasomes enables next-generation inhibitor design. Science. 2016;353(6299):594–8. https://doi.org/10.1126/science.aaf8993

    Article  CAS  PubMed  Google Scholar 

  23. Groll M, Kim KB, Kairies N, Huber R, Crews CM. Crystal structure of epoxomicin: 20S proteasome reveals a molecular basis for selectivity of alpha ‘,beta ‘-epoxyketone proteasome inhibitors. J Am Chem Soc. 2000;122(6):1237–8. https://doi.org/10.1021/ja993588m

    Article  CAS  Google Scholar 

  24. Wasserman HH, Ho WB. (Cyanomethylene)Phosphoranes as Novel Carbonyl 1,1-Dipole Synthons - an Efficient Synthesis of Alpha-Keto Acids, Esters, and Amides. J Org Chem. 1994;59(16):4364–6. https://doi.org/10.1021/jo00095a005

    Article  CAS  Google Scholar 

  25. Groll M, Schellenberg B, Bachmann AS, Archer CR, Huber R, Powell TK, et al. A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature. 2008;452(7188):755–8. https://doi.org/10.1038/nature06782

    Article  CAS  PubMed  Google Scholar 

  26. Krahn D, Ottmann C, Kaiser M. The chemistry and biology of syringolins, glidobactins and cepafungins (syrbactins). Nat Prod Rep. 2011;28(11):1854–67. https://doi.org/10.1039/C1NP00048A

    Article  CAS  PubMed  Google Scholar 

  27. Clerc J, Groll M, Illich DJ, Bachmann AS, Huber R, Schellenberg B, et al. Synthetic and structural studies on syringolin A and B reveal critical determinants of selectivity and potency of proteasome inhibition. Proc Natl Acad Sci USA. 2009;106(16):6507–12. https://doi.org/10.1073/pnas.0901982106

    Article  PubMed  Google Scholar 

  28. Pirrung MC, Biswas G, Ibarra-Rivera TR. Total synthesis of syringolin A and B. Org Lett. 2010;12(10):2402–5. https://doi.org/10.1021/ol100761z

    Article  CAS  PubMed  Google Scholar 

  29. Dai C, Stephenson CR. Total synthesis of syringolin A. Org Lett. 2010;12(15):3453–5. https://doi.org/10.1021/ol101252y

    Article  CAS  PubMed  Google Scholar 

  30. Chiba T, Hosono H, Nakagawa K, Asaka M, Takeda H, Matsuda A, et al. Total synthesis of syringolin A and improvement of its biological activity. Angew Chem Int Ed Engl. 2014;53(19):4836–9. https://doi.org/10.1002/anie.201402428

    Article  CAS  PubMed  Google Scholar 

  31. Bachmann AS, Opoku-Ansah J, Ibarra-Rivera TR, Yco LP, Ambadi S, Roberts CC, et al. Syrbactin Structural Analog TIR-199 Blocks Proteasome Activity and Induces Tumor Cell Death. J Biol Chem. 2016;291(16):8350–62. https://doi.org/10.1074/jbc.M115.710053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chiba T, Matsuda A, Ichikawa S. Structure-activity relationship study of syringolin A as a potential anticancer agent. Bioorg Med Chem Lett. 2015;25(21):4872–7. https://doi.org/10.1016/j.bmcl.2015.06.015

    Article  CAS  PubMed  Google Scholar 

  33. Totaro KA, Barthelme D, Simpson PT, Sauer RT, Sello JK. Substrate-guided optimization of the syringolins yields potent proteasome inhibitors with activity against leukemia cell lines. Bioorg Med Chem. 2015;23(18):6218–22. https://doi.org/10.1016/j.bmc.2015.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Archer CR, Groll M, Stein ML, Schellenberg B, Clerc J, Kaiser M, et al. Activity enhancement of the synthetic syrbactin proteasome inhibitor hybrid and biological evaluation in tumor cells. Biochemistry (Mosc). 2012;51(34):6880–8. https://doi.org/10.1021/bi300841r

    Article  CAS  Google Scholar 

  35. Beck P, Dubiella C, Groll M. Covalent and non-covalent reversible proteasome inhibition. Biol Chem. 2012;393(10):1101–20. https://doi.org/10.1515/hsz-2012-0212

    Article  CAS  PubMed  Google Scholar 

  36. Stein ML, Cui H, Beck P, Dubiella C, Voss C, Kruger A, et al. Systematic comparison of peptidic proteasome inhibitors highlights the alpha-ketoamide electrophile as an auspicious reversible lead motif. Angew Chem Int Ed Engl. 2014;53(6):1679–83. https://doi.org/10.1002/anie.201308984

    Article  CAS  PubMed  Google Scholar 

  37. Voss C, Scholz C, Knorr S, Beck P, Stein ML, Zall A, et al. alpha-Keto phenylamides as P1’-extended proteasome inhibitors. ChemMedChem. 2014;9(11):2557–64. https://doi.org/10.1002/cmdc.201402244

    Article  CAS  PubMed  Google Scholar 

  38. Braun HA, Umbreen S, Groll M, Kuckelkorn U, Mlynarczuk I, Wigand ME, et al. Tripeptide mimetics inhibit the 20 S proteasome by covalent bonding to the active threonines. J Biol Chem. 2005;280(31):28394–401. https://doi.org/10.1074/jbc.M502453200

    Article  CAS  PubMed  Google Scholar 

  39. Naggie S, Patel K, McHutchison J. Hepatitis C virus directly acting antivirals: current developments with NS3/4A HCV serine protease inhibitors. J Antimicrob Chemother. 2010;65(10):2063–9. https://doi.org/10.1093/jac/dkq284

    Article  CAS  PubMed  Google Scholar 

  40. De Risi C, Pollini GP, Zanirato V. Recent Developments in General Methodologies for the Synthesis of alpha-Ketoamides. Chem Rev. 2016;116(5):3241–305. https://doi.org/10.1021/acs.chemrev.5b00443

    Article  CAS  PubMed  Google Scholar 

  41. Juhl K, Jorgensen KA. Catalytic asymmetric direct alpha-amination reactions of 2-keto esters: a simple synthetic approach to optically active syn-beta-amino-alpha-hydroxy esters. J Am Chem Soc. 2002;124(11):2420–1

    Article  CAS  Google Scholar 

  42. Shu C, Zeng X, Hao MH, Wei X, Yee NK, Busacca CA, et al. RCM macrocyclization made practical: an efficient synthesis of HCV protease inhibitor BILN 2061. Org Lett. 2008;10(6):1303–6. https://doi.org/10.1021/ol800183x

    Article  CAS  PubMed  Google Scholar 

  43. Copeland RA. Evaluation of Enzyme Inhibitors in Drug Discovery: a Guide for Medicinal Chemists and Pharmacologists. 2nd ed. Hoboken, New Jersey: John Wiley & Sons; 2013. Chapter 5

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the Center for Drug Design at the University of Minnesota. We thank Prof Rodney Johnson on the use of the ozone generator in his laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This paper is dedicated to Professor Robert Vince on the occasion of his 80th birthday.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, R., Wilson, D.J. & Chen, L. Synthesis of macrocyclic α-ketoamide as a selective and reversible immunoproteasome inhibitor. Med Chem Res 30, 410–420 (2021). https://doi.org/10.1007/s00044-020-02678-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02678-2

Keywords

Navigation