Skip to main content
Log in

RF-3192C and other polyketides from the marine endophytic Aspergillus niger ASSB4: structure assignment and bioactivity investigation

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Chemical investigation of the methanolic extract of endophytic Aspergillus niger SB4, isolated from the marine alga Laurencia obtuse, afforded the pentacyclic polyketide, RF-3192C (1), the dimeric coumarin orlandin (2), fonsecin B (3), TMC-256A1 (4), cyclo-(Leu-Ala) (5), and cerebroside A (6).The chemical structure of RF-3192C (1) is assigned herein for the first time using 1D/2D NMR and HRESI-MS. Additionally, the revision of the NMR assignments of orlandin (2) was reported herein as well. Investigation of the antimicrobial activities of isolated compounds revealed the high activity of RF-3192C (1) against Pseudomonas aeruginosa and Bacillus subtilis, and moderate activity against yeast. Moreover, an in vitro cytotoxic activity against liver (HEPG2), cervical (HELA), lung (A549), prostate (PC3), and breast (MCF7) cancer cell lines of the isolated compounds was evaluated. The isolation and taxonomical characterization of the producing fungus was reported as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Elshahawi SI, Shaaban KA, Kharel MK, Thorson JS. A comprehensive review of glycosylated bacterial natural products. Chem Soc Rev. 2015;44:7591–697. https://doi.org/10.1039/C4CS00426D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miyanaga A. Structure and function of polyketide biosynthetic enzymes: various strategies for production of structurally diverse polyketides. Biosci Biotechnol Biochem. 2017;81:2227–36. https://doi.org/10.1080/09168451.2017.1391687.

    Article  CAS  PubMed  Google Scholar 

  3. Sun L, Zeng J, Cui P, Wang W, Yu D, Zhan J. Manipulation of two regulatory genes for efficient production of chromomycins in streptomyces reseiscleroticus. J Biol Eng. 2018;12:9. https://doi.org/10.1186/s13036-018-0103-x.

  4. Tidgewell K, Clark BR, Gerwick WH. The natural products chemistry of cyanobacteria. Chem Biol. 2010;2:141–88. https://doi.org/10.1016/B978-008045382-8.00041-1.

    Article  Google Scholar 

  5. Zhou H, Li Y, Tang Y. Cyclization of aromatic polyketides from bacteria and fungi. Nat Prod Rep. 2010;27:839–68. https://doi.org/10.1039/B911518H.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Law BK. Rapamycin: an anti-cancer immunosuppressant? Crit Rev Oncol Hemat. 2005;56:47–60. https://doi.org/10.1016/j.critrevonc.2004.09.009.

    Article  Google Scholar 

  7. Hayashi K, Kawauchi M, Nakai C, Sankawa U, Seto H, Hayashi T. Characterization of inhibitory action of concanamycins against herpes simplex virus. Antivir Chem Chemother. 2001;12:51–9. https://doi.org/10.1177/095632020101200103.

    Article  CAS  PubMed  Google Scholar 

  8. Ganguly AK, McCormick JL, Chan TM, Saksena AK, Das PR. Determination of the absolute stereochemistry at the C16 orthoester of everninomicin antibiotics; a novel acid-catalyzed isomerization of orthoesters. Tetrahedron Lett. 1997;38:7989–92. https://doi.org/10.1016/S0040-4039(97)10178-2.

    Article  CAS  Google Scholar 

  9. Wienrich BG, Krahn T, Schön M, Rodriguez ML, Kramer B, Busemann M, et al. Structure–function relation of efomycines, a family of small-molecule inhibitors of selectin functions. J Investig Dermatol. 2006;126:882–9. https://doi.org/10.1038/sj.jid.5700159.

  10. Risdian C, Mozef T, Wink J. Biosynthesis of polyketides in streptomyces. Microorganisms. 2019;7:124. https://doi.org/10.3390/microorganisms7050124.

    Article  CAS  PubMed Central  Google Scholar 

  11. Banerjee A, Sanyal S, Kulkarni KK, Jana K, Roy S, Das C, et al. Anticancer drug mithramycin interacts with core histones: An additional mode of action of the DNA groove binder. FEBS Open Bio. 2014;4:987–95. https://doi.org/10.1016/j.fob.2014.10.007.

  12. Staunton J, Weissman KJ. Polyketide biosynthesis: a millennium review. Nat Prod Rep. 2001;18:380–416. https://doi.org/10.1039/A909079G.

    Article  CAS  PubMed  Google Scholar 

  13. Shen B. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr Opin Chem Biol. 2003;7:285–95. https://doi.org/10.1016/s1367-5931(03)00020-6.

    Article  CAS  PubMed  Google Scholar 

  14. Laatsch H. AntiBase: the natural compound identifier. Germany: Wiley-VCH, Weinheim; 2017.

  15. Yoshida T, Kato T, Kawamura Y, Matsumoto K, Itazaki H. Aldose reductase inhibitors manufacture with Chaetomella. Eur. Pat. 557 939. 1993; CA, 119, 269194w.

  16. Cutler HG, Crumley FG, Cox RH, Hernandez O, Cole RJ, Dorner JW. Orlandin: a nontoxic fungal metabolite with plant growth inhibiting properties. J Agr Food Chem. 1979;27:592–5. https://doi.org/10.1021/jf60223a043.

  17. Shaaban M, Shaaban KA, Abdel-Aziz MS. Seven naphtho-γ-pyrones from the marine-derived fungus Alternaria alternata: structure elucidation and biological properties. Org Med Chem Lett. 2012;2:6. https://doi.org/10.1186/2191-2858-2-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sakurai M, Kohno J, Yamamoto K, Okuda T, Nishio M, Kawano K, et al. TMC-256A1 and C1, new inhibitors of IL-4 signal transduction produced by Aspergillus niger var niger TC 1629. J Antibiot. 2002;55:685–92. https://doi.org/10.7164/antibiotics.55.685.

  19. Nagia MM, Shaaban M, Abdel-Aziz MS, El-Zalabani SM, Hanna AG. Secondary metabolites and bioactivity of two fungal strains. Egypt Pharm J. 2012;11:16–21. https://doi.org/10.7123/01.EPJ.000415591.30981.86.

    Article  Google Scholar 

  20. Naureen H, Asker MMS, Shaaban M. Structural elucidation and bioactivity studies of secondary metabolites from endophytic Aspergillus niger. Indian J Appl Res. 2015;5:74–81.

    Google Scholar 

  21. http://www.ncbi.nlm.nih.gov. Accessed Oct 2019.

  22. Homer J. Solvent effects on nuclear magnetic resonance chemical shifts. Appl Spectrosc Rev. 1975;9:1–132. https://doi.org/10.1080/05704927508081488.

    Article  CAS  Google Scholar 

  23. Trainor K, Palumbo JA, MacKenzie DWS, Meiering EM. Temperature dependence of NMR chemical shifts: Tracking and statistical analysis. Protein Sci. 2020;29:306–14. https://doi.org/10.1002/pro.3785.

    Article  CAS  PubMed  Google Scholar 

  24. Costantino V, de Rosa C, Fattorusso E, Imperatore C, Mangoni A, Irace C, et al. Oreacerebrosides: bioactive cerebrosides with a triunsaturatedsphingoid base from the sea star oreasterreticulatus. Eur J Org Chem. 2007;31:5277–83. https://doi.org/10.1002/ejoc.200700390.

  25. ISP media were developed by Difco Laboratories to select stable properties and reproducible procedures for characterization of actinomycetes especially the genus streptomyces in the frame of the International Streptomyces Project (ISP). ISP 1, 2, and 4 are special for Streptomyces spp. Due to the similarity between streptomycetes and fungi in the production of mycelium and the production media of fungi since they are rich in nitrogen sources and highly assimilable carbon source (glucose), it has been used for luxuriantly growing up the fungi.

  26. Hamed A, Abdel-Razek AS, Frese M, Stammler HG, El-Haddad AF, Ibrahim TMA, et al. Terretonin N: a new meroterpenoid from nocardiopsis sp. Molecules. 2018;23:299. https://doi.org/10.3390/molecules23020299.

  27. Shaaban M, Abdel-Razik AS, Abdel-Aziz MS, AbouZied A, Fadel M. Bioactive secondary metabolites from marine streptomyces albogriseolus isolated from red sea coast. J Appl Sci Res. 2013;9:996–1003.

    CAS  Google Scholar 

  28. Bauer AW. Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol. 1966;45:149–58.

    Article  Google Scholar 

  29. Hamed A, Abdel-Razek AS, Frese M, Wibberg D, El-Haddad AF, Ibrahim TMA, et al. New oxaphenalene derivative from marine-derived Streptomyces griseorubens sp ASMR4. Z Naturforsch B. 2017;72:53–62. https://doi.org/10.1515/znc-2017-0140.

  30. Awantu AF, Lenta BN, Bogner T, Fongang YF, Ngouela S, Wansi JD, et al. Dialiumoside, an olean-18-ene triterpenoid from dialiumexcelsum. Z Naturforsch. 2011;66b:624–8. https://doi.org/10.1515/znb-2011-0610.

  31. Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc. 2006;1:1112–6. https://doi.org/10.1038/nprot.2006.179.

    Article  CAS  PubMed  Google Scholar 

  32. Shaaban KA, Wang X, Elshahawi SI, Ponomareva LV, Sunkara M, Copley GC, et al. Herbimycins D–F, ansamycin analogues from streptomyces sp. RM-7-15. J Nat Prod. 2013;76:1619–26. https://doi.org/10.1021/np400308w.

  33. Wang X, Shaaban KA, Elshahawi SI, Ponomareva LV, Sunkara M, Zhang Y, et al. Frenolicins C–G, pyranonaphthoquinones from streptomyces sp. RM-4-15. J Nat Prod. 2013;76:1441–7. https://doi.org/10.1021/np400231r.

  34. Shaaban KA, Elshahawi SI, Wang X, Horn J, Kharel MK, Leggas M, et al. Cytotoxic indolocarbazoles from actinomaduramelliaura ATCC 39691. J Nat Prod. 2015;78:1723–9. https://doi.org/10.1021/acs.jnatprod.5b00429.

  35. Savi DC, Shaaban KA, Gos FMWR, Ponomareva LV, Thorson JS, Glienke C, et al. Phaeophleospora vochysiae Savi, Glienke sp. nov. isolated from Vochysia divergens found in the Pantanal, Brazil, produces bioactive secondary metabolites. Sci Rep. 2018;8:3122. https://doi.org/10.1038/s41598-018-21400-2.

Download references

Acknowledgements

The authors are thankful to the NMR and MS Departments in Bielefeld University for the spectral measurements. We thank Carmela Michalek for her assistance in biological activity testing; Marco Wißbrock and Anke Nieß for technical assistance. This research work has been financed by the German Academic Exchange Service (DAAD) with funds from the German Federal Foreign Office in the frame of the Research Training Network “Novel Cytotoxic Drugs from Extremophilic Actinomycetes” (Project ID 57166072). This work was also supported by National Institutes of Health grant R01 GM115261 (JST), the Center of Biomedical Research Excellence (COBRE) in Pharmaceutical Research and Innovation (CPRI, NIH P20 GM130456), the University Of Kentucky College Of Pharmacy, the University of Kentucky Markey Cancer Center and the National Center for Advancing Translational Sciences (UL1TR000117 and UL1TR001998).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Shaaban.

Ethics declarations

Conflict of interest

JST is a co-founder of Centrose (Madison, WI, USA); except that the authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, M.M., Abdel-Razek, A.S., Hamed, A. et al. RF-3192C and other polyketides from the marine endophytic Aspergillus niger ASSB4: structure assignment and bioactivity investigation. Med Chem Res 30, 647–654 (2021). https://doi.org/10.1007/s00044-020-02658-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02658-6

Keywords

Navigation