Skip to main content

Advertisement

Log in

Synthesis and anticancer evaluation of amide derivatives of imidazo-pyridines

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A novel series of amide functionalized imidazo[1,2-a]pyridine (14a14j) derivatives were synthesized and screened for their anticancer activities against breast (MCF-7 and MDA-MB-231), lung (A549), and prostate (DU-145) cancer cell lines using MTT assay with etoposide as the standard reference drug. Among them, compound 14j showed highest potency in anticancer activities against MCF-7, MDA-MB-231, A549, and DU-145 cell lines with IC50 values of 0.021 ± 0.0012 µM, 0.95 ± 0.039 µM, 0.091 ± 0.0053 µM, and 0.24 ± 0.032 µM, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1

Similar content being viewed by others

References

  1. Eckhardt S. Recent progress in the development of anticancer agents. Curr Med Chem Anti-Canc Agents. 2002;2:419–39.

    CAS  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.

    PubMed  Google Scholar 

  3. Takiar R, Nadiyal D, Nandakumar A. Projections of number of cancer cases in India (2010-20) by cancer groups. Asian Pac J Can Pre. 2010;11:1045–9.

    Google Scholar 

  4. Agarwal M, Singh V, Sharma SC, Sharma P, Ansari MdY, Jadav SS, et al. Design and synthesis of new 2,5-disubstituted- 1,3,4-oxadiazole analogues as anticancer agents. Med Chem Res. 2016;25:2289–303.

    CAS  Google Scholar 

  5. Ahsan MJ, Choudhary K, Jadav SS, Yasmin S, Ansari MY, Sreenivasulu R. Synthesis, antiproliferative activity and molecular docking studies of curcumin, analogues bearing pyrazole ring. Med Chem Res. 2015;24:4166–80.

    CAS  Google Scholar 

  6. Durgesh R, Sreenivasulu R, Srinivasarao P, Raju RR. Synthesis and anti-tumor evaluation of novel 5-bromo indole-aryl ketohydrazide-hydrazone analogues. Asian J Chem. 2018a;30:1201–4.

    Google Scholar 

  7. Durgesh R, Sreenivasulu R, Srinivasarao P, Raju RR. Synthesis and anticancer evaluation of indazole-aryl hydrazide-hydrazone derivatives. J Ind Chem Soc. 2018b;95:433–8.

    Google Scholar 

  8. Durgesh R, Sreenivasulu R, Raju RR. Synthesis and anti-tumor evaluation of Indole- substituted Indole fused keto hydrazidehydrazones. J Pharm Res. 2018c;12:42–46.

    Google Scholar 

  9. Hatti I, Sreenivasulu R, Jadav SS, Ahsan MJ, Raju RR. Synthesis and biological evaluation of 1,3,4-oxadiazole linked bis indole derivatives as anticancer agents. Monatsh Chem. 2015a;146:1699–705.

    CAS  Google Scholar 

  10. Hatti I, Sreenivasulu R, Jadav SS, Jayaprakash V, Kumar CG, Raju RR. Synthesis, cytotoxic activity and docking studies of new 4-aza podophyllotoxin derivatives. Med Chem Res. 2015b;24:3305–13.

    CAS  Google Scholar 

  11. Shahinshavali S, Sreenivasulu R, Guttikonda VR, Kolli D, Rao MVB. Synthesis and anticancer activity of amide derivatives of 1,2-isoxazole combined 1,2,4-thiadiazole. Russian J Gen Chem. 2019a;89:324–9.

    CAS  Google Scholar 

  12. Reddy NB, Burra VR, Ravindranath LK, Sreenivasulu R, Kumar VN. Synthesis and biological evaluation of benzoxazole fused combretastatin derivatives as anticancer agents. Monatsh Chem. 2016a;147:593–8.

    Google Scholar 

  13. Reddy NB, Burra VR, Ravindranath LK, Kumar VN, Sreenivasulu R, Sadanandam P. Synthesis and biological evaluation of benzimidazole fused ellipticine derivatives as anticancer agents. Monatsh Chem. 2016b;147:599–604.

    Google Scholar 

  14. Shahinshavali SK, Sreenivasulu R, Guttikonda VR, Kolli D, Rao MVB. Synthesis and biological evaluation of amide derivatives of 1,2-isoxazole fused 1,2,4-thiadiazole as anticancer agents. Russian J Gen Chem. 2019b;89:324–9.

    CAS  Google Scholar 

  15. Spandana Z, Sreenivasulu R, Rao MVB. Design, synthesis and anticancer evaluation of carbazole fused aminopyrimidine derivatives. Lett Org Chem. 2019a;16:662–7.

    CAS  Google Scholar 

  16. Spandana Z, Sreenivasulu R, Rekha TM, Rao MVB. Novel 1,3,4-oxadiazole fused thiadiazole derivatives: synthesis and study of anticancer activities. Lett Drug Des Disco. 2019b;16:656–62.

    CAS  Google Scholar 

  17. Sreenivasulu R, Durgesh R, Jadav SS, Sujitha P, Kumar CG, Raju RR. Synthesis, anticancer evaluation and molecular docking studies of bis(indolyl)triazinones, Nortopsentin analogs. Chem Pap. 2018;72:1369–78.

    CAS  Google Scholar 

  18. Sreenivasulu R, Reddy KT, Jadav SS, Sujitha P, Kumar CG, Raju RR. Synthesis, antiproliferative and apoptosis induction potential activities of novel bis(indolyl) hydrazide-hydrazone derivatives. Bioorg Med Chem. 2019;27:1043–55.

    CAS  PubMed  Google Scholar 

  19. Sreenivasulu R, Sujitha P, Jadav SS, Ahsan MJ, Kumar CG, Raju RR. Synthesis, antitumor evaluation and molecular docking studies of Indole–Indazolyl hydrazide– hydrazone derivatives. Monatsh Chem. 2017;148:305–14.

    CAS  Google Scholar 

  20. Sreenivasulu R, Tej MB, Jadav SS, Sujitha P, Kumar CG, Raju RR. Synthesis, anticancer evaluation and molecular docking studies of 2,5-Bis(indolyl)-1,3,4-oxadiazoles, Nortopsentin analogues. J Mol Struct. 2020;1208:127875.

    CAS  Google Scholar 

  21. Subramanyam M, Sreenivasulu R, Rambabu G, Rao MVB, Rao KP. Synthesis, biological evaluation and docking studies of 1,3,4-oxadiazole fused benzothiazole derivatives for anticancer drugs. Lett Drug Des Disco. 2018;15:1299–307.

    CAS  Google Scholar 

  22. Suma VR, Sreenivasulu R, Subramanyam M, Rao KRM. Design, synthesis and anticancer evaluation of amide derivatives of structurally modified Combretastatin A4 as anticancer agents. Russian J Gen Chem. 2019;89:499–504.

    Google Scholar 

  23. Yakantham T, Sreenivasulu R, Raju RR. Design, synthesis and anticancer evaluation of 2-(3-(4-((5-aryl-1,2,4-oxadiazol-3-yl)methoxy)phenyl)isoxazol-5-yl)-N-(3,4,5-trimeth yl phenyl)thiazol-4-amine derivatives. Russ J Gen Chem. 2019;89:1485–90.

    CAS  Google Scholar 

  24. Madhavi S, Sreenivasulu R, Ansari MdY, Ahsan MJ, Raju RR. Synthesis, biological evaluation and molecular docking studies of pyridine incorporated chalcone derivatives as anticancer agents. Lett Org Chem. 2016;13:682–692.

    CAS  Google Scholar 

  25. Madhavi S, Sreenivasulu R, Jyotsna Y, Raju RR. Synthesis of chalcone incorporated quinazoline derivatives as anticancer agents. Saudi Pharm J. 2017;25:275–279.

    PubMed  Google Scholar 

  26. Madhavi S, Sreenivasulu R, Raju RR. (2017) Synthesis and biological evaluation of oxadiazole incorporated ellipticine derivatives as anticancer agents Monatsh Chem 148:933–938

    CAS  Google Scholar 

  27. Pragathi YJ, Sreenivasulu R, Veronica D, Madhavi S, Raju RR. Design, synthesis and biological evaluation of novel 2-(4-arylsubstituted-1H-1,2,3- triazol -1-yl)-N-(4-(2- (thiazol-2-yl)benzo[d]thiazol-6-yl)phenyl) acetamide derivatives as potent anticancer agents. Russian J Gen Chem. 2019;89:1009–1014.

    CAS  Google Scholar 

  28. Enguehard-Gueiffier E, Gueiffier A Recent progress in the pharmacology of imidazo[1,2- a]pyridines. Mini Rev Med Chem. 2007;7:888–99.

    CAS  PubMed  Google Scholar 

  29. Roopan SM, Patil SM, Palaniraja J. Recent synthetic scenario on imidazo[1,2-a]pyridines chemical intermediate. Res Chem Intermed. 2016;42:2749–90.

    Google Scholar 

  30. Byth KF, Culshaw JD, Green S, Oakes SE, Thomas AP. Imidazo[1,2-a]pyridines. Part 2: SAR and optimisation of a potent and selective class of cyclin-dependent kinase inhibitors. Bioorg Med Chem Lett. 2004;14:2245–8.

    CAS  PubMed  Google Scholar 

  31. Hamdouchi C, Zhong B, Mendoza J, Collins E, Jaramillo C, De Diego JE, et al. Structure-based design of a new class of highly selective aminoimidazo[1,2-a]pyridine-based inhibitors of cyclin dependent kinases. Bioorg Med Chem Lett. 2005;15:1943–7.

    CAS  PubMed  Google Scholar 

  32. Dahan-Farkas N, Langley C, Rousseau AL, Yadav DB, Davids H, de Koning CB. 6- Substituted imidazo[1,2-a]pyridines: Synthesis and biological activity against colon cancer cell lines HT-29 and Caco-2. Eur J Med Chem. 2011;46:4573–83.

    CAS  PubMed  Google Scholar 

  33. Fisher MH, Lusi A. Imidazo[1,2-a]pyridine anthelmintic and antifungal agents. J Med Chem. 1972;15:982–5.

    CAS  PubMed  Google Scholar 

  34. Moraski GC, Markley LD, Chang M, Cho S, Franzblau SG, Hwang CH, et al. Generation and exploration of new classes of antitubercular agents: The optimization of oxazolines, oxazoles, thiazolines, thiazoles to imidazo[1,2-a]pyridines and isomeric 5,6-fused scaffolds. Bioorg Med Chem. 2012;20:2214–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chezal JM, Paeshuyse J, Gaumet V, Canitrot D, Maisonial A, Lartigue C, et al. Synthesis and antiviral activity of an imidazo[1,2-a]pyrrolo[2,3-c]pyridine series against the bovine viral diarrhea virus. Eur J Med Chem. 2010;45:2044–7.

    CAS  PubMed  Google Scholar 

  36. Al-Tel TH, Al-Qawasmeh RA, Zaarour R. Design, synthesis and in vitro antimicrobial evaluation of novel Imidazo[1,2-a]pyridine and imidazo[2,1-b][1,3]benzothiazole motifs. Eur J Med Chem. 2011;46:1874–81.

    CAS  PubMed  Google Scholar 

  37. Lhassani M, Chavignon O, Chezal MJ, Teulade JC, Chapat JP, Snoeck R, et al. Synthesis and antiviral activity of imidazo[1,2-a]pyridines. Eur J Med Chem. 1999;34:271–4.

    CAS  Google Scholar 

  38. Kaminski JJ, Doweyko AM. Antiulcer Agents. 6. analysis of the in vitro biochemical and in vivo gastric antisecretory activity of substituted imidazo[1,2-a]pyridines and related analogues using comparative molecular field analysis and hypothetical active site lattice methodologies. J Med Chem. 1999;40:427–36.

    Google Scholar 

  39. Mizushige K, Ueda T, Yukiiri K, Suzuki H. Olprinone: A phosphodiesterase III inhibitor with positive inotropic and vasodilator effects. Cardiovasc Drug Rev. 2002;20:163–74.

    CAS  PubMed  Google Scholar 

  40. Liu Z, Chen ZC, Zheng QG. Hypervalent iodine in synthesis. 94. A facile synthesis of 2-substituted-imidazo[1,2-a]pyridines by cyclocondensation of alkynyl(phenyl) iodonium salts and 2-aminopyridine. Synth Commun. 2004;34:361–7.

    CAS  Google Scholar 

  41. Nair DK, Mobin SM, Namboothiri INN. Synthesis of imidazopyridines from the Morita–Baylis–Hillman acetates of nitroalkenes and convenient access to Alpidem and Zolpidem. Org Lett. 2012;14:4580–3.

    CAS  PubMed  Google Scholar 

  42. Santra S, Bagdi AK, Majee A, Hajra A. Iron (III)catalysed cascade reaction between nitroolefins and 2-aminopyridines: Synthesis of imidazo[1,2-a]pyridines and easy access towards Zolimidine. Adv Synth Catal. 2013;355:1065–70.

    CAS  Google Scholar 

  43. Stasyuk AJ, Banasiewicz M, Cyranski MK, Gryko DT. Imidazo[1,2-a]pyridines susceptible to excited state intramolecular proton transfer: One-pot synthesis via an Ortoleva–King reaction. J Org Chem. 2012;77:5552–8.

    CAS  PubMed  Google Scholar 

  44. Ueno M, Togo H. Environmentally benign preparation of heteroaromatics from ketones or alcohols, with macroporous polystyrenesulfonic acid and (Diacetoxyiodo)benzene, followed by thioamide, amidine, and 2-aminopyridine. Synthesis. 2004;2004:2673–7.

    Google Scholar 

  45. Wu Z, Pan Y, Zhou X. Synthesis of 3-Arylimidazo[1,2-a]pyridines by a catalyst-free cascade Process. Synthesis 2011;2011:2255–60.

    Google Scholar 

  46. Xie YY, Chen ZC, Zheng QG. Organic reactions in ionic liquids: ionic liquid-accelerated cyclocondensation of α-Tosyloxyketones with 2-aminopyridine. Synthesis. 2002;2002:1505–8.

    Google Scholar 

  47. Yadav JS, Reddy BVS, Rao YG, Srinivas M, Narsaiah AV. Cu(OTf)2-catalyzed synthesis of imidazo[1,2-a]pyridines from α-diazoketones and 2-aminopyridines. Tetrahedron Lett. 2007;48:7717–20.

    CAS  Google Scholar 

  48. Zhu DJ, Chen JX, Liu MC, Ding JC, Wu HY. Catalyst- and Solvent-free Synthesis of Imidazo[1,2-a]pyridines. J Braz Chem Soc. 2009;20:482–7.

    CAS  Google Scholar 

  49. Almeida GM, Rafique J, Saba S, Siminski T, Mota NSRS, Filho DW, et al. Novel selenylated imidazo[1,2-a]pyridines for breast cancer chemo therapy: Inhibition of cell proliferation by Akt-mediated regulation, DNA cleavage and apoptosis. Biochem Bioph Res Co. 2018;503:1291–7.

    CAS  Google Scholar 

  50. Chitti S, Singireddi SR, Reddy PSK, Trivedi P, Bobde Y, Kumar C, et al. Design, synthesis and biological evaluation of 2-(3,4-dimethoxyphenyl)-6 (1,2,3,6-tetrahydropyridin-4-yl)imidazo[1,2-a]pyridine analogues as antiproliferative agents. Bioorg Med Chem Lett. 2019;29:2551–8.

    CAS  PubMed  Google Scholar 

  51. Dam J, Ismail Z, Kurebwa T, Gangat N, Harmse L, Marques HM, et al. Synthesis of copper and zinc 2-(pyridin-2-yl)imidazo[1,2-a]pyridine complexes and their potential anticancer activity. Eur J Med Chem. 2017;126:353–68.

    CAS  PubMed  Google Scholar 

  52. Fan YH, Li W, Li DD, Bai MX, Song HR, Xu YN., et al. Design, synthesis, and biological evaluation of novel 3-substituted imidazo[1,2- a]pyridine and quinazolin-4(3H)-one derivatives as PI3Ka inhibitors. Eur J Med Chem. 2017;139:95–106.

    CAS  PubMed  Google Scholar 

  53. Garamvolgyi R, Dobos J, Sipos A, Boros S, Illyes E, Baska F, et al. Design and synthesis of new imidazo[1,2-a]pyridine and imidazo [1,2-a]pyrazine derivatives with antiproliferative activity against melanoma cells. Eur J Med Chem. 2016;108:623–43.

    CAS  PubMed  Google Scholar 

  54. Kanthecha DA, Bhatt BS, Patel MN. Synthesis, characterization and biological activities of imidazo[1,2-a] pyridine based gold(III) metal complexes. Heliyon. 2019;5:1–11.

    Google Scholar 

  55. Karaaslan C, Doganc F, Alp M, Koc A, Karabay AZ, Goker H. Regioselective N-alkylation of some imidazole-containing heterocycles and their in vitro anticancer evaluation. J Mol Struct. 2020;1205:1–13.

    Google Scholar 

  56. Kazandjian D, Blumenthal GM, Luo L, He K, Fran I, Lemery S, et al. Benefit-risk summary of Crizotinib for the treatment of patients with ROS1 alteration-positive, metastatic non-small cell lung cancer. Oncologist 2016;21:974–80.

    PubMed  PubMed Central  Google Scholar 

  57. Lawson M, Rodrigo J, Baratte B, Robert T, Delehouze C, Lozach O, et al. Synthesis, biological evaluation and molecular modeling studies of imidazo[1,2-a]pyridines derivatives as protein kinase inhibitors. Eur J Med Chem. 2016;123:105–14.

    CAS  PubMed  Google Scholar 

  58. Liu J, Zuo D, Jing T, Guo M, Xing L, Zhang W, et al. Synthesis, biological evaluation and molecular modeling of imidazo[1,2-a] pyridine derivatives as potent antitubulin agents. Bioorg Med Chem. 2017;25:4088–99.

    CAS  PubMed  Google Scholar 

  59. Ramya PVS, Angapelly S, Rani RS, Digwal CS, Kumar CG, Babu BN, et al. Hypervalent iodine(III) catalyzed rapid and efficient access to benzimidazoles, benzothiazoles and quinoxalines: Biological evaluation of some new benzimidazole-imidazo[1,2-a]pyridine conjugates. Arab J Chem. 2020;13:120–33.

    Google Scholar 

  60. Ramya PVS, Guntuku L, Angapelly S, Digwal CS, Lakshmi UJ, Sigalapalli DK, et al. Synthesis and biological evaluation of curcumin inspired imidazo[1,2-a]pyridine analogues as tubulin polymerization inhibitors. Eur J Med Chem. 2017;143:216–31.

    PubMed  Google Scholar 

  61. Rassokhina I, Volkova YA, Kozlov AS, Scherbakov AM, Andreeva OE, Shirinian VZ, et al. Synthesis and antiproliferative activity evaluation of steroidal imidazo[1,2-a]pyridines. Steroids. 2016;113:29–37.

    CAS  PubMed  Google Scholar 

  62. Vasu KK, Digwal CS, Pandya AN, Pandya DH, Sharma JA, Patel S, et al. Imi dazo[1,2-a]pyridines linked with thiazoles/thiophene motif through keto spacer as potential cytotoxic agents and NF-jB inhibitors. Bioorg Med Chem Lett. 2017;27:5463–6.

    CAS  PubMed  Google Scholar 

  63. Xi JB, Fang YF, Frett B, Zhu ML, Zhu T, Kong YN, et al. Structure-based design and synthesis of imidazo[1,2-a]pyridine derivatives as novel and potent Nek2 inhibitors with in vitro and in vivo antitumor activities. Eur J Med Chem. 2017;126:1083–106.

    CAS  PubMed  Google Scholar 

  64. Couxi C, Mengxue W, Xueqiang L, Tiancai L, Xuezhang Z. Rational synthesis and preliminary anti-cancer activities of 18β-glycyrrhetinic acid derivatives containing pyridine carboxamide. Chin J Org Chem. 2015;35:835–42.

    Google Scholar 

  65. Frolova LV, Malik I, Uglinskii PY, Rogelj S, Kornienko A, Magedov IV. Multicomponent synthesis of 2,3-dihydrochromeno[4,3-d]pyrazolo[3,4-b]pyridine-1,6- diones: A novel heterocyclic scaffold with antibacterial activity. Tetrahedron Lett. 2011;52:6643–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Khidre RE, Abu-Hashem AA, El-Shazly M. Synthesis and anti-microbial activity of some 1- substituted amino-4,6-dimethyl-2-oxo-pyridine-3-carbonitrile derivatives. Eur J Med Chem. 2011;46:5057–64.

    CAS  PubMed  Google Scholar 

  67. Márquez-Flores YK, Campos-Aldrete ME. Docking simulations, synthesis, and anti-inflammatory activity evaluation of 2-(N-alkyl)amino-3-nitroimidazo[1,2-a]pyridines. Med Chem Res. 2012;21:775–82.

    Google Scholar 

  68. Sondhi SM, Dinodia M, Kumar A. Synthesis, anti-inflammatory and analgesic activity evaluation of some amidine and hydrazone derivatives. Bioorg Med Chem. 2006;14:4657–63.

    CAS  PubMed  Google Scholar 

  69. Prasanthi G, Prasad KV, Bharathi K. Synthesis, anticonvulsant activity and molecular properties prediction of dialkyl 1-(di(ethoxycarbonyl)methyl)-2,6-dimethyl-4-substituted-1,4-dihydropyridine-3,5-dicarboxylates. Eur J Med Chem. 2014;73:97–104.

    CAS  PubMed  Google Scholar 

  70. Mahernia S, Adib M, Mahdavi M, Nosrati M. A solvent-free reaction between acetophenone oximes and epoxy styrenes: an efficient synthesis of 2,4,6-triarylpyridines under neutral conditions. Tetrahedron Lett. 2014;55:3844–6.

    CAS  Google Scholar 

  71. Qu H, Yu X, Zhi XY, Lv M, Xu H. Natural-product-based insecticidal agents 14. Semisynthesis and insecticidal activity of new piperine-based hydrazone derivatives against Mythimna separata walker in vivo. Bioorg Med Chem Lett. 2013;23:5552–7.

    CAS  PubMed  Google Scholar 

  72. Suksrichavalit T, Prachayasittikul S, Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V. Copper complexes of pyridine derivatives with superoxide scavenging and antimicrobial activities. Eur J Med Chem. 2009;44:3259–65.

    CAS  PubMed  Google Scholar 

  73. Kwon HB, Park C, Jeon KH, Lee E, Park SE, Jun KY, et al. A series of novel terpyridine-skeleton molecule derivants inhibit tumor growth and metastasis by targeting topoisomerases. J Med Chem. 2015;58:1100–22.

    CAS  PubMed  Google Scholar 

  74. Jiao Y, Xin BT, Zhang Y, Wu J, Lu X, Zheng Y, et al. Design, synthesis and evaluation of novel 2-(1H-imidazol-2-yl) pyridine Sorafenib derivatives as potential BRAF inhibitors and anti-tumor agents. Eur J Med Chem. 2015;90:170–83.

    CAS  PubMed  Google Scholar 

  75. Ravinaik B, Ramachandran D, Rao MVB. Design and synthesis of novel β-Carboline linked amide derivatives as anticancer agents. Russian J Gen Chem. 2019a;89:511–6.

    CAS  Google Scholar 

  76. Ravinaik B, Ramachandran D, Rao MVB. Synthesis and anticancer evaluation of amide derivatives of 1,3,4-oxadiazole linked with benzoxazole. Russian J Gen Chem. 2019b;89:1003–8.

    CAS  Google Scholar 

  77. Shahinshavali S, Poojith N, Guttikonda VR, Sreenivasulu R, Rao MVB. Design, synthesis and anticancer evaluation of acetamides comprising 1,2,3-triazole, 1,3,4-thiadiazole and isothia zolo[4,3-b]pyridine rings. Lett Org Chem. 2020;17:864–71.

    CAS  Google Scholar 

  78. Tao S, Ji E, Shi L, Liu N, Xu L, Dai B. Copper-catalyzed C–N bond exchange of N-heterocyclic substituents around pyridine and pyrimidine cores. Synthesis. 2017;49:5120–30.

    CAS  Google Scholar 

  79. Furet P, Kalthoff FS, Mah R, Ragot C, Stauffer F. 1H-imidazo[4,5-c]quinolinone derivatives. Geneva 20, Switzerland: PCT Int Appl WO; 2010. 2010139731 A1.

  80. Mosmann T. Rapid colorometric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandava Venkata Basaveswara Rao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, C.S., Reddy, A.G., Susithra, E. et al. Synthesis and anticancer evaluation of amide derivatives of imidazo-pyridines. Med Chem Res 30, 74–83 (2021). https://doi.org/10.1007/s00044-020-02638-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02638-w

Keywords

Navigation