Skip to main content
Log in

Cytotoxic, anti-inflammatory, and α-glucosidase inhibitory effects of flavonoids from Lippia graveolens (Mexican oregano)

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Lippia graveolens is a plant used for a variety of medicinal purposes and as a seasoning. Chemical investigation of a methanol extract obtained by percolation of its leaves and flowers led to the isolation of two monoterpenes (12) and twelve flavonoids, including two flavonols (34), two flavones (56), four flavanones (710), two dihydroflavonols (1112), and two dihydrochalcone glucosides (1314). β-Sitosteryl glucopyranoside (15) was also isolated. The structures of all the isolates were elucidated by analysis of the NMR and MS spectra. The configuration of chiral flavonoids was determined by optical rotation and comparison with literature data. Based on the medicinal uses of the plant, the flavonoids 314 were tested for their ability to inhibit the activity of α-glucosidase, while the anti-inflammatory activity of 4 and 714 was evaluated in the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear edema model. As a result, only the flavone 6 was a significative inhibitor of α-glucosidase (IC50 = 37.19 µM), while the flavanones 910 and the dihydrochalcone 14 showed the best anti-inflammatory properties with IC50 values ranging from 0.72 to 1.31 µmol/ear. The cytotoxic activity of eleven of these flavonoids (35 and 714) against five cancer human cell lines was also evaluated. The flavonol 4 inhibited moderately the proliferation of the U251 (glioblastoma) and SK-LU-1 (lung adenocarcinoma) cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aboushoer MI, Fathy HM, Abdel-Kadera MS, Goetz G, Omar AA (2010) Terpenes and flavonoids from an Egyptian collection of Cleome droserifolia. Nat Prod Res 24:687–696

    Article  CAS  Google Scholar 

  • Agrawal PK (1989) Carbon-13 NMR of flavonoids. In: Agrawal PK (ed.) Studies in organic chemistry, vol 39. Elsevier Sci and Tech, Amsterdam, p 100–119. 160–161

  • Arana-Sánchez A, Estarrón-Espinosa M, Obledo-Vázquez EN, Padilla-Camberos E, Silva-Vázquez R, Lugo-Cervantes E (2010) Antimicrobial and antioxidant activities of Mexican oregano essential oils (Lippia graveolens H. B. K.) with different composition when microencapsulated in β-cyclodextrin. Lett Appl Microbiol 50:585–590

    Article  Google Scholar 

  • Argueta Villamar A (1994) Atlas de las plantas de la medicina tradicional mexicana, vol 2. Instituto Nacional Indigenista, Cd Mx, p 1073–1074

  • Baron AD (1998) Postprandial hyperglycemia and α-glucosidase inhibitors. Diabetes Res Clin Pract 40:S51–S55

    Article  CAS  Google Scholar 

  • Bohlmann F, Zeisberg R, Klein E (1975) 13C NMR-spektren von monoterpenen. Org Magn Reson 7:426–432

    Article  CAS  Google Scholar 

  • Bower AM, Real Hernandez LM, Berhow MA, Gonzalez de Mejia E (2014) Bioactive compounds from culinary herbs inhibit a molecular target for type 2 diabetes management, dipeptidyl peptidase IV. J Agric Food Chem 62:6147–6158

    Article  CAS  Google Scholar 

  • Bueno-Durán AY, Cervantes-Martínez J, Obledo-Vázquez EN (2010) Composition of essential oil from Lippia graveolens. Relationship between spectral light quality and thymol and carvacrol content. J Ess Oil Res 5:137–141

    Google Scholar 

  • Calvo-Irabién LM, Parra-Tabla V, Acosta Arriola V, Escalante-Erosa F, Díaz-Vera L, Dzib GR, Peña-Rodríguez LM (2014) Phytochemical diversity of the essential oils of Mexican oregano (Lippia graveolens Kunth) populations along an edapho-climatic gradient. Chem Biodivers 11:1010–1021

    Article  Google Scholar 

  • De Young LM, Kheifets JB, Ballaron SJ, Young JM (1989) Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents. Agents Actions 26:335–341

    Article  Google Scholar 

  • Domínguez XA, Sánchez H, Suárez M, Baldas JH, González MR (1989) Chemical constituents of Lippia graveolens. Planta Med 55:208–209

    Article  Google Scholar 

  • Du Q, Jerz G, Winterhalter P (2004) Preparation of three flavonoids from the bark of Salix alba by high‐speed countercurrent chromatographic separation. J Liq Chromatogr Relat Technol 27:3257–3264

    Article  CAS  Google Scholar 

  • Faizi S, Ali M, Saleem R, Irfanullah, Bibi S (2001) Complete 1H and 13C NMR assignments of stigma-5-en-3-O-β-glucoside and its acetyl derivative. Magn Reson Chem 39:399–405

    Article  CAS  Google Scholar 

  • González-Güereca MC, Soto-Hernández M, Martínez-Vázquez M (2010) Isolation of (Z)(2S)-5,6,7,3ʹ,5ʹ-pentahydroxyflavanone-7-O-β-D-glucopyranoside, from Lippia graveolens H.B.K. var. berlandieri Schauer, a new anti-inflammatory and cytotoxic flavanone. Nat Prod Res 24:1528–1536

    Article  Google Scholar 

  • González-Trujano ME, Hernández-Sánchez LY, Muñoz Ocotero V, Dorazco-González A, Guevara Fefer P, Aguirre-Hernández E (2017) Pharmacological evaluation of the anxiolytic-like effects of Lippia graveolens and bioactive compounds. Pharm Biol 55:1569–1576

    Article  Google Scholar 

  • Han X, Armstrong DW (2005) Using geminal dicationic ionic liquids as solvents for high-temperature organic reactions. Org Lett 7:4205–4208

    Article  CAS  Google Scholar 

  • Hilt P, Schieber A, Yildirim C, Arnold G, Klaiber I, Conrad J, Beifuss U, Carle R (2003) Detection of phloridzin in strawberries (Fragaria x ananassa Duch.) by HPLC-PDA-MS/MS and NMR spectroscopy. J Agric Food Chem 51:2896–2899

    Article  CAS  Google Scholar 

  • Huerta C(1997) Orégano mexicano: oro vegetal Biodiversitas 15:8–13 . CONABIO

    Google Scholar 

  • Ibrahim ARS, Galal AM, Ahmed MS, Mossa GS (2003) O-Demethylation and sulfation of 7-methoxylated flavanones by Cunninghamella elegans. Chem Pharm Bull 51:203–206

    Article  Google Scholar 

  • Ki N-C, Graf TN, Sparacino CM, Wani MC, Wal ME (2003) Complete isolation and characterization of silybins and isosilybins from milk thistle (Silybum marianum). Org Biomol Chem 1:1684–1689

    Article  Google Scholar 

  • Kim KY, Nam KA, Kurihara H, Kim SM (2008) Potent α-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 69:2820–2825

    Article  CAS  Google Scholar 

  • Kuroyanagi M, Yamamoto Y, Fukushima S, Ueno A, Noro T, Miyase T (1982) Chemica1 studies on the constituents of Polygonum nodosum. Chem Pharm Bull 30:1602–1608

    Article  CAS  Google Scholar 

  • Li Y, Wen S, Kota BP, Peng G, Li GQ, Yamahara J, Roufogalis BD (2005) Punica granatum flower extract, a potent α-glucosidase inhibitor, improves postprandial hyperglycemia in Zucker diabetic fatty rats. J Ethnopharmacol 99:239–244

    Article  Google Scholar 

  • Lin LZ, Mukhopadhyay S, Robbins RJ, Harnly JM (2007) Identification and quantification of flavonoids of Mexican oregano (Lippia graveolens) by LC-DAD-ESI/MS analysis. J Food Compos Anal 20:361–369

    Article  CAS  Google Scholar 

  • Lu Y, Foo LY (1997) Identification and quantification of major polyphenols in apple pomace. Food Chem 59:187–194

    Article  CAS  Google Scholar 

  • Machado M, Santoro G, Sousa MG, Salgueiro L, Cavaleiro C (2010a) Activity of essential oils on the growth of Leishmania infantum promastigotes. Flavour Frag J 25:156–160

    Article  CAS  Google Scholar 

  • Machado M, Sousa MG, Salgueiro L, Cavaleiro C (2010b) Effects of essential oils on the growth of Giardia lamblia trophozoites. Nat Prod Commun 5:137–141

    CAS  PubMed  Google Scholar 

  • Maldonado E, Díaz-Arumir H, Toscano RA, Martínez M (2010) Lupane triterpenes with a δ-lactone at Ring E, from Lippia mexicana. J Nat Prod 73:1969–1972

    Article  CAS  Google Scholar 

  • Markham KR, Ternai B (1976) 13C NMR of flavonoids II. Flavonoids and other then flavone and flavonol aglycones. Tetrahedron 32:2607–2612

  • Miller AB, Cates RG, Lawrence M, Fuentes Soria JA, Espinoza LV, Martinez JV, Arbizú DA (2015) The antibacterial and antifungal activity of essential oils extracted from Guatemalan medicinal plants. Pharm Biol 53:548–554

    Article  CAS  Google Scholar 

  • Miura K, Inagaki T, Nakatani N (1989) Structure and activity of new deodorant biphenyl compounds from thyme (Thymus vulgaris L.). Chem Pharm Bull 37:1816–1819

    Article  CAS  Google Scholar 

  • Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A, Gray-Goodrich M, Campbell H, Mayo J, Boyd M (1991) Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst 83:757–766

  • Nagao T, Abe F, Kinjo J, Okabe H (2002) Antiproliferative constituents in plants 10. Flavones from the leaves of Lantana montevidensis Briq. and consideration of structure-activity relationship. Biol Pharm Bull 25:875–879

    Article  CAS  Google Scholar 

  • Pascual ME, Slowing K, Carretero E, Sánchez Mata D, Villar A (2001) Lippia: traditional uses, chemistry and pharmacology: a review. J Ethnopharmacol 76:201–214

  • Pérez Sabino JF, Mérida Reyes M, Farfán Barrera CD (2012) Análise e discriminação de quimiotipos de Lippia graveolens H.B.K. da Guatemala por microextração em fase sólida, CG-EM e análise multivariada. Quim Nova 35:97–101

    Article  Google Scholar 

  • Quiroz Velásquez JDC, Reyes Lara M, García Olivares JG, Salazar Bravo A, Bazán Cruz BE, Hernández Mendoza JL (2016) Factores climáticos, geográficos y fisiográficos que contribuyen a la distribución potencial del orégano (Lippia spp.) en México. Investigación y Cienc 24:21–25

    Google Scholar 

  • Rastrelli LA, Caceres C, Morales F, De Simone F, Aquino R (1998) Iridoids from Lippia graveolens. Phytochemistry 49:1829–1832

    Article  CAS  Google Scholar 

  • Ribas Pilau M, Hartz Alves S, Weiblen R, Arenhart S, Cueto AP, Lovato LT (2011) Antiviral activity of the Lippia graveolens (Mexican oregano) essential oil and its main compound carvacrol against human and animal viruses. Braz J Microbiol 42:1616–1624

    Article  Google Scholar 

  • Sala A, Recio MC, Schinella GR, Máñez S, Giner RM, Cerdá-Nicolás M, Ríos JL (2003) Assessment of the anti-inflammatory activity and free radical scavenger activity of tiliroside. Eur J Pharmacol 461:53–61

  • Shin D, Kinoshita K, Koyama K, Takahashi K (2002) Antiemetic principles of Alpinia officinarum. J Nat Prod 65:1315–1318

    Article  CAS  Google Scholar 

  • Shin JE, Han MJ, Kim DH (2003) 3-Methylethergalangin isolated from Alpinia officinarum inhibits pancreatic lipase. Biol Pharm Bull 26:854–857

    Article  CAS  Google Scholar 

  • Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

  • Wang RF, Yang XW, Ma CM, Liu HY, Shang MY, Zhang QY, Cai SQ, Park JH (2004) Trollioside, a new compound from the flowers of Trollius chinensis. J Asian Nat Prod Res 6:139–144

    Article  CAS  Google Scholar 

  • Ye XP, Song CQ, Yuan P, Mao RG (2010) α-Glucosidase and α-amylase inhibitory activity of common constituents from traditional Chinese medicine used for diabetes mellitus. Chin J Nat Med 8:349–352

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to H. Ríos, I. Chávez, R. Gaviño, B. Quiroz, A. Peña, and E. Huerta for the NMR spectra; R. Patiño for the IR and optical rotations; L. Velasco and J. Pérez for the MS; C. Márquez for GC analysis; and C. Rivera and H. Malagón for providing the animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Maldonado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amador, S., Nieto-Camacho, A., Ramírez-Apan, M.T. et al. Cytotoxic, anti-inflammatory, and α-glucosidase inhibitory effects of flavonoids from Lippia graveolens (Mexican oregano). Med Chem Res 29, 1497–1506 (2020). https://doi.org/10.1007/s00044-020-02569-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02569-6

Keywords

Navigation