Skip to main content
Log in

Nano Sb2O3 catalyzed green synthesis, cytotoxic activity, and molecular docking study of novel α-aminophosphonates

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Green synthesis of a series of novel dialkyl (aryl substituted)(2-fluoro-4-((2-methylcarbamoyl)pyridine-4-yl)oxy)phenyl)amino)methyl)phosphonates is accomplished by a simple and an efficient one pot three component reaction of 3-(4-amino-3-fluorobenzyl)-N-methylbenzamide with different substituted aromatic aldehydes and dialkyl phosphite in the presence of nano Sb2O3 catalyst under solvent free conditions at 40–50 °C to obtain the title compounds. Excellent isolated product yields are obtained (85–95%) with high purity within shorter reaction times (30–60 min). The title compounds are characterized by IR, 1H, 13C, 31P-NMR and mass spectral data. The synthesized compounds are screened for their anticell-proliferation activity on seven cell lines, Control cells–HEK293 (human embryonic kidney), DU-145 (human prostate adenocarcinoma), MCF-7 (human ER+/PR+/Her2− breast cancer), MDA-MB-231 (human ER−/PR−/Her2− breast cancer), Mia-Paca-2 (human pancreatic carcinoma), HeLa (human cervical cancer) cells as well as HepG2 (human hepatocellular carcinoma) cancer cell lines using Sulforhodamine B (SRB) assay method. Docking studies were carried out for all these synthesized compounds against topoisomerase-II by using Auto dock method. Doxorubicin was taken as standard. Compounds 4a, 4c, 4d, 4e, 4h, 4i, 4k, and 4l exhibited higher cytotoxic activity than the standard doxorubicin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen MC, Fuhrer W, Tuck B, Wade R, Wood JM (1989) Renin inhibitors. Synthesis of transition-state analog inhibitors containing phosphorus acid derivatives at the scissile bond. J Med Chem 32:1652–1661

    Article  CAS  PubMed  Google Scholar 

  • Atherton FR, Hassall CH, Lambert RW (1986) Synthesis and structure-activity relationships of antibacterial phosphonopeptides incorporating (1-aminoethyl)phosphonic acid and (amino methyl)phosphonic acid. J Med Chem 29:29–40

    Article  CAS  PubMed  Google Scholar 

  • Bashir D, Amrinder S, Akshya S, Praveen P, Arup C, Meena C, Baldev S (2012) Catalyst and solvent-free, ultrasound promoted rapid protocol for the one-pot synthesis of α-aminophosphonates at room temperature. Tetrahedron Lett 53:5497–5502

    Article  CAS  Google Scholar 

  • Bayer E, Gugel K, Hagen H, Jessipow S, Konig W, Zahner H (1972) Metabolites of microorganisms. 98th communication. Phosphinothricin and phosphinothricyl-alanyl-alanine. Helv Chim Acta 55:224–239

    Article  CAS  PubMed  Google Scholar 

  • Bhagat S, Chakraborty AK (2007) An extremely efficient three-component reaction of aldehydes/ketones, amines, and phosphites (Kabachnik−fields reaction) for the synthesis of α-aminophosphonates catalyzed by magnesium perchlorate. J Org Chem 72:1263–127

    Article  CAS  PubMed  Google Scholar 

  • Bloemink MJ, Diederen JJH, Dorenbos JP, Heetebrij RJ, Keppler BK, Reedijk J (1999) Calcium ions do accelerate the DNA binding of new antitumor-active platinum aminophosphonate complexes. Eur J Inorg Chem 10:1655–1657

    Article  Google Scholar 

  • Dhawan B, Redmore D (1987) Optically active 1-aminoalkylphosphonic acids. Phosphorus Sulfur Silicon Relat Elem 32:119–144

    Article  CAS  Google Scholar 

  • Doye S (2004) Development of the Ti-catalyzed intermolecular hydroamination of alkynes. Synlett 1653–1672

  • Duh B (2002) Effect of antimony catalyst on solid-state polycondensation of poly(ethylene terephthalate). Polymer 43:3147–3154

    Article  CAS  Google Scholar 

  • Herczegh P, Buxton TB, McPherson JC, Kova´cs-Kulyassa A, Brewer PD, Sztaricskai F, Stroebel GG, Plowman KM, Farcasiu D, Hartmann JF (2002) Osteo adsorptive bisphosphonate derivatives of fluoroquinolone antibacterials. J Med Chem 45:2338–2341

    Article  CAS  PubMed  Google Scholar 

  • Heydari A, Arefi A (2007) One pot three component synthesis of α-aminophosphonates and its derivatives. Catal Commun 8:1023–1026

    Article  CAS  Google Scholar 

  • Hirschmann R, Smith AB, Taylor CM, Benkovic PA, Taylor SD et al. (1994) Synthesis and antifungal activity of novel chiral α-aminophosphonates containing fluorine moiety. Science 265:234–37

    Article  CAS  PubMed  Google Scholar 

  • Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) room-temperature ultraviolet nanowire. Science 292:1897–1899

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Song B, Zhang G et al. (2006) Synthesis, X-ray crystallographic analysis, and antitumor activity of N-(benzothiazole-2-yl)-1-(fluorophenyl)-O,O-dialkyl-α-aminophosphonates. Bioorg Med Chem Lett 16:1537–1543

    Article  CAS  PubMed  Google Scholar 

  • Kaboudin B, Rahmani A (2003) Silica-supported ammonium hydrogen carbonate as an efficient reagent for one-pot synthesis of 1-aminophosphonates from aldehydes. Synthesis 17:2705–2708

    Article  CAS  Google Scholar 

  • Kafarski P, Lejczak B (2001) Aminophosphonic acids of potential medical importance. Curr Med Chem Anticancer Agents 1:301–312

    Article  CAS  PubMed  Google Scholar 

  • Klepacz A, Zwierzak A (2002) An expeditious one-pot synthesis of diethyl N-Boc-1-aminoalkylphosphonates. Tetrahedron Lett 43:1079–1080

    Article  CAS  Google Scholar 

  • Kobra A, Meghdad K, Akbar H (2014) A catalyst-free synthesis of α-aminophosphonates in glycerol. Tetrahedron Lett 55:7236–7239

    Article  CAS  Google Scholar 

  • Kuznetsov YI, Kazanskaya GY, Tsirulnikova NV (2003) Aminophosphonate corrosion inhibitors for steel. Prot Met 39:120–123

    Article  CAS  Google Scholar 

  • Laschat S, Kunz H (1992) Carbohydrates as chiral templates: stereoselective synthesis of (r)- and (s)-α-aminophosphonic acid derivatives. Synthesis 1:90–95

    Article  Google Scholar 

  • Linderoth S, Pedersen MS (1994) Fe-Al2O3 nanocomposites prepared by high-energy ball milling. J Appl Phys 75:5867–5869

    Article  CAS  Google Scholar 

  • Liu H, Imoto H, Shido T, Iwasawa Y (2001) Selective ammoxidation of isobutylene to methacrylonitrile on a new family of crystalline Re–Sb–O catalysts. J Catal 200:69–78

    Article  CAS  Google Scholar 

  • Liu H, Iwasawa Y (2002) Unique performance and characterization of a crystalline SbRe2O6 catalyst for selective ammoxidation of isobutane. J Phys Chem B 106:2319–2329

    Article  CAS  Google Scholar 

  • Maier L (1990) Organic phosphorus compounds 91.1 synthesis and properties of 1-amino-2-arylethylphosphonic and-phosphinic acids as well as-phosphine oxides. Phosphorus Sulfur Silicon Relat Elem 53:43–67

    Article  CAS  Google Scholar 

  • Maier L, Spoerri H (1991) Resolution of 1-amino-2-(4-fluorophenyl)ethylphosphonic acid as well as some di- and tripeptides. Phosphorus Sulfur Silicon Relat Elem 61:69–75

    Article  CAS  Google Scholar 

  • Manjula A, Rao V, Neelakanthan P (2003) One-pot synthesis of α-aminophosphonates: an inexpensive approach. Synth Commun 33:2963–2969

    Article  CAS  Google Scholar 

  • Meyer JH, Barlett PA (1998) Macrocyclic inhibitors of penicillopepsin. 1. Design, synthesis, and evaluation of an inhibitor bridged between P1 and P3. J Am Chem Soc 120:4600–4609

    Article  CAS  Google Scholar 

  • Miller DJ, Hammond SM, Anderluzzi D, Bugg TDH (1998) Aminoalkylphosphinate inhibitors of D-Ala-D-Ala adding enzyme. J Chem Soc Perkin Trans 1:131–142

    Article  Google Scholar 

  • Moonen K, Laureyn I, Stevens CV (2004) Synthetic methods for azaheterocyclic phosphonates and their biological activity. Chem Rev 104:6177–6216

    Article  CAS  PubMed  Google Scholar 

  • Natchev IA (1988) Synthesis, enzyme-substrate interaction, and herbicidal activity of phosphoryl analogues of lycine. Liebigs Ann Chem 9:861–867

    Article  Google Scholar 

  • Ouimette D, Coffey M (1989) Comparative antifungal activity of four phosphonate compounds against isolates of nine Phytophthora species. Phytopathology 79:761–767

    Article  CAS  Google Scholar 

  • Radha Rani C, Ira B, Chandra Sekhar Reddy G, Syama Sundar C, Suresh Reddy C (2013) Green synthesis of α-aminophosphonate derivatives on a solid supported TiO2–SiO2 catalyst and their anticancer activity. Arch Pharm Chem Life Sci 346:667–676

    Article  CAS  Google Scholar 

  • Ranu BC, Hajra A, Jana U (1999) General procedure for the synthesis of α-amino phosphonates from aldehydes and ketones using indium (III) chloride as a catalyst. Org Lett 1:1141–1143

    Article  CAS  Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3–8

    Article  Google Scholar 

  • Schlemminger I, Willecke A, Maison W, Koch R, Lutzen A, Martens J (2001) Diastereoselective Lewis acid mediated hydrophosphonylation of heterocyclic imines: a stereoselective approach towards α-amino phosphonates. J Chem Soc Perkins Trans 1 0:2804–2816

    Article  CAS  Google Scholar 

  • Simoni D, Invidiata FP, Manferdini M, Lampronti I, Rondonin R, Roberti M, Pollini GP (1998) Tetramethylguanidine (TMG)-catalyzed addition of dialkyl phosphites to α, β-unsaturated carbonyl compounds, alkenenitriles, aldehydes, ketones and imines. Tetrahedron Lett 39:7615–7618

    Article  CAS  Google Scholar 

  • Spengler J, Anderle F, Bosch E, Grasselli RK, Pillep B, Behrens P, Lapina OB, Shubin AA, Eberle HJ, Knozinger H (2001) Antimony oxide-modified vanadia-based catalystsphysical characterization and catalytic properties. J Phys Chem B 105:10772–10783

    Article  CAS  Google Scholar 

  • Smith WW, Bartlett PA (1998) Macrocyclic inhibitors of penicillopepsin. 3. Design, synthesis, and evaluation of an inhibitor bridged between P2 and P1. J Am Chem Soc 120:4622–4628

    Article  CAS  Google Scholar 

  • Vichail V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1:1112–1116

    Article  CAS  Google Scholar 

  • Xie D, Zhang A, Liu D, Yin, Wan J, Zeng S, Hu D (2017) Synthesis and antiviral activity of novel a-aminophosphonates containing 6-fluorobenzothiazole moiety. Phosphorus Sulfur Silicon Relat Elem 192:1061–1067

    Article  CAS  Google Scholar 

  • Yager KM, Taylor CM, Smith AB (1994) Asymmetric synthesis of α-aminophosphonates via diastereoselective addition of lithium diethyl phosphite to chelating imines. J Am Chem Soc 116:9377–9378

    Article  CAS  Google Scholar 

  • Yang S, Gao XW, Diao CL et al. (2006) Synthesis and antifungal activity of novel chiral α-aminophosphonates containing fluorine moiety. Chin J Chem 24:1581–1588

    Article  CAS  Google Scholar 

  • Yuan CY, Li SS, Li CZ, Chen SJ, Huang WS, Wang GQ, Pan C, Zhang YX (1997) New strategy for the synthesis of functionalized phosphonic acids. Heteroat Chem 8:103–122

    Article  CAS  Google Scholar 

  • Zhang Z, Guo L, Wang W (2001) Synthesis and characterization of antimony oxide nanoparticles. J Mater Res 16:803–805

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank to Professor C. Devendhranath Reddy for his helpful discussions and also acknowledge DST-PURSE Centre, S.V. University, Tirupati for providing instrumental analysis and funding to one of the authors Mr. Mohan Gundluru through SRF (File No: 17118-UGC-III(3)/ DST-PURSE 2nd Phase/2017, Dt: 23-08-2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Reddy Cirandur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poola, S., Nadiveedhi, M.R., Sarva, S. et al. Nano Sb2O3 catalyzed green synthesis, cytotoxic activity, and molecular docking study of novel α-aminophosphonates. Med Chem Res 28, 528–544 (2019). https://doi.org/10.1007/s00044-019-02302-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-019-02302-y

Keywords

Navigation