Skip to main content
Log in

Enriching biologically relevant chemical space around 2-aminothiazole template for anticancer drug development

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Combinatorial library based on a biologically relevant core template, 2-aminothiazole, with immense scope of diversity multiplication was designed for anticancer therapeutics. The diversity elements were incorporated through azomethine linkage on C4 hydrazine terminus in 5-benzoyl-2-arylamino-1,3-thiazole using isopropyl, isobutyl, cyclohexyl, and benzyl fragments and enrichment of chemical space therein was evaluated. Molecular docking of an in-house 200-member virtual library in anticancer target proteins- estrogen receptor (3ERT), cyclin dependent kinase (3FDN), and Aurora kinase (3LAU), identified selective binding of the compounds as ATP competitive inhibitors of 3LAU. The synthetic access to the compounds was realized through a facile and economically viable [4 + 1] ring synthesis strategy employing commercially available reagents. The in vitro cytotoxicity of selected members against human cancer cell lines indicated the potential of the designed scaffold in anticancer drug discovery, where compounds 2b, 3b, and 4b were found to be active against MCF-7 and A549 cell lines in less than ten micro molar concentrations. Moreover the predicted physicochemical properties pointed to the drug appropriateness for most of these molecules, that they obey the rule of five (RO5). Thus we present 2-alkyl/arylamino-4-alkylidene/arylidenehydrazino-5-benzoyl-1,3-thiazoles as a prospective and expandable skeleton for diversity oriented synthesis and in the discovery of selective Aurora kinase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Altıntop MD, Özdemir A, Turan-Zitouni G, Ilgın S, Atlı Ö, Demirci F, Kaplancıklı ZA (2014) Synthesis and in vitro evaluation of new nitro-substituted thiazolyl hydrazone derivatives as anticandidal and anticancer agents. Molecules 19:14809–14820

    Article  PubMed  Google Scholar 

  • Ayati A, Emami S, Asadipour A, Shafiee A, Foroumadi A (2015) Recent applications of 1, 3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur JMed Chem 97:699–718

    Article  CAS  Google Scholar 

  • Bennani YL (2012) Drug discovery in the next decade: innovation needed ASAP. Drug Discov Today 17:S31–S44

    Article  PubMed  Google Scholar 

  • Bharti SK, Nath G, Tilak R, Singh S (2010) Synthesis, anti-bacterial and anti-fungal activities of some novel Schiff bases containing 2, 4-disubstituted thiazole ring. Eur J Med Chem 45:651–660

    Article  CAS  PubMed  Google Scholar 

  • Carpinelli P, Ceruti R, Giorgini ML, Cappella P, Gianellini L, Croci V, Degrassi A, Texido G, Rocchetti M, Vianello P (2007) PHA-739358, a potent inhibitor of Aurora kinases with a selective target inhibition profile relevant to cancer. Mol Cancer Ther 6:3158–3168

    Article  CAS  PubMed  Google Scholar 

  • Carradori S, Secci D, Bolasco A, Rivanera D, Mari E, Zicari A, Lotti LV, Bizzarri B (2013) Synthesis and cytotoxicity of novel (thiazol-2-yl) hydrazine derivatives as promising anti-Candida agents. Eur J Med Chem 65:102–111

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Zheng S, Luo X, Shen J, Zhu W, Liu H, Gui C, Zhang J, Zheng M, Puah CM (2005) Focused combinatorial library design based on structural diversity, druglikeness and binding affinity score. J Comb Chem 7:398–406

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Avula SR, Gao W-W, Addla D, Tangadanchu VKR, Zhang L, Lin J-M, Zhou C-H (2016) Multi-targeting exploration of new 2-aminothiazolyl quinolones: synthesis, antimicrobial evaluation, interaction with DNA, combination with topoisomerase IV and penetrability into cells. Eur J Med Chem 124:935–945

    Article  CAS  PubMed  Google Scholar 

  • Dandawate P, Ahmad A, Deshpande J, Swamy KV, Khan EM, Khetmalas M, Padhye S, Sarkar F (2014) Anticancer phytochemical analogs 37: synthesis, characterization, molecular docking and cytotoxicity of novel plumbagin hydrazones against breast cancer cells. Bioorg Med Chem Lett 24:2900–2904

    Article  CAS  PubMed  Google Scholar 

  • Das D, Sikdar P, Bairagi M (2016) Recent developments of 2-aminothiazoles in medicinal chemistry. Eur J Med Chem 109:89–98

    Article  CAS  PubMed  Google Scholar 

  • Deng Z-L, Du C-X, Li X, Hu B, Kuang Z-K, Wang R, Feng S-Y, Zhang H-Y, Kong D-X (2013) Exploring the biologically relevant chemical space for drug discovery. J Chem Inf Model 53:2820–2828

    Article  CAS  PubMed  Google Scholar 

  • Dilek Altıntop M, Cantürk Z, Baysal M, Asım Kaplancıklı Z (2016) Synthesis and evaluation of new thiazole derivatives as potential antimicrobial agents. Lett Drug Des Discov 13:903–911

    Article  Google Scholar 

  • Dilek Altıntop M, Ozdemir A, Ilgın S, Atli O (2014) Synthesis and biological evaluation of new pyrazole-based thiazolyl hydrazone derivatives as potential anticancer agents. Lett Drug Des Discov 11:833–839

    Article  Google Scholar 

  • Dimova D, Bajorath J (2016) Systematic design of analogs of active compounds covering more than 1000 targets. MedChemComm 7:859–863

    Article  CAS  Google Scholar 

  • Dobson CM (2004) Chemical space and biology. Nature 432:824–828

    Article  CAS  PubMed  Google Scholar 

  • Dua R, Shrivastava S, Sonwane S, Srivastava S (2011) Pharmacological significance of synthetic heterocycles scaffold: a review. Adv Biol Res 5:120–144

    CAS  Google Scholar 

  • Fancelli D, Moll J, Varasi M, Bravo R, Artico R, Berta D, Bindi S, Cameron A, Candiani I, Cappella P (2006) 1, 4, 5, 6-tetrahydropyrrolo [3, 4-c] pyrazoles: identification of a potent Aurora kinase inhibitor with a favorable antitumor kinase inhibition profile. J Med Chem 49:7247–7251

    Article  CAS  PubMed  Google Scholar 

  • Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196

    Article  CAS  PubMed  Google Scholar 

  • Gallardo-Godoy A, Gever J, Fife KL, Silber BM, Prusiner SB, Renslo AR (2011) 2-Aminothiazoles as therapeutic leads for prion diseases. J Med Chem 54:1010–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorczynski MJ, Leal RM, Mooberry SL, Bushweller JH, Brown ML (2004) Synthesis and evaluation of substituted 4-aryloxy-and 4-arylsulfanyl-phenyl-2-aminothiazoles as inhibitors of human breast cancer cell proliferation. Bioorg Med Chem 12:1029–1036

    Article  CAS  PubMed  Google Scholar 

  • Gorse A-D (2006) Diversity in medicinal chemistry space. Curr Top Med Chem 6:3–18

    Article  CAS  PubMed  Google Scholar 

  • Green DA, Antholine WE, Wong SJ, Richardson DR, Chitambar CR (2001) Inhibition of malignant cell growth by 311, a Novel Iron chelator of the pyridoxal isonicotinoyl hydrazone class effect on the R2 subunit of ribonucleotide reductase. Clin Cancer Res 7:3574–3579

    CAS  PubMed  Google Scholar 

  • Hajduk PJ, Galloway WR, Spring DR (2011) Drug discovery: a question of library design. Nature 470:42–43

    Article  CAS  PubMed  Google Scholar 

  • Holla BS, Malini K, Rao BS, Sarojini B, Kumari NS (2003) Synthesis of some new 2, 4-disubstituted thiazoles as possible antibacterial and anti-inflammatory agents. Eur J Med Chem 38:313–318

    Article  CAS  PubMed  Google Scholar 

  • John Harris C, Hill RD, Sheppard DW, Slater MJ, Stouten PFW (2011) The design and application of target-focused compound libraries. Comb Chem High Throughput Screen 14:521–531

    Article  PubMed  Google Scholar 

  • Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS All-Atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

  • Kalinowski DS, Sharpe PC, Bernhardt PV, Richardson DR (2007) Design, synthesis, and characterization of new iron chelators with anti-proliferative activity: structure-activity relationships of novel thiohydrazone analogs. J Med Chem 50:6212–6225

    Article  CAS  PubMed  Google Scholar 

  • Kaplánek R, Havlík M, Dolenský B, Rak J, Džubák P, Konečný P, Hajdúch M, Králová J, Král V (2015a) Synthesis and biological activity evaluation of hydrazone derivatives based on a Tröger’s base skeleton. Bioorg Med Chem 23:1651–1659

    Article  PubMed  Google Scholar 

  • Kaplánek R, Jakubek M, Rak J, Kejík Z, Havlík M, Dolenský B, Frydrych I, Hajdúch M, Kolář M, Bogdanová K (2015b) Caffeine–hydrazones as anticancer agents with pronounced selectivity toward T-lymphoblastic leukemia cells. Bioorg Chem 60:19–29

    Article  PubMed  Google Scholar 

  • Kashyap SJ, Garg VK, Sharma PK, Kumar N, Dudhe R, Gupta JK (2012) Thiazoles: having diverse biological activities. Med Chem Res 21:2123–2132

    Article  CAS  Google Scholar 

  • Lipinski C, Hopkins A (2004) Navigating chemical space for biology and medicine. Nature 432:855–861

    Article  CAS  PubMed  Google Scholar 

  • Lovejoy DB, Richardson DR (2002) Novel “hybrid” iron chelators derived from aroylhydrazones and thiosemicarbazones demonstrate selective antiproliferative activity against tumor cells. Blood 100:666–676

    Article  CAS  PubMed  Google Scholar 

  • Manfredi MG, Ecsedy JA, Meetze KA, Balani SK, Burenkova O, Chen W, Galvin KM, Hoar KM, Huck JJ, LeRoy PJ (2007) Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc Natl Acad Sci 104:4106–4111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortlock AA, Foote KM, Heron NM, Jung FH, Pasquet G, Lohmann J-JM, Warin N, Renaud F, De Savi C, Roberts NJ (2007) Discovery, synthesis, and in vivo activity of a new class of pyrazoloquinazolines as selective inhibitors of aurora B kinase. J Med Chem 50:2213–2224

    Article  CAS  PubMed  Google Scholar 

  • Nasr T, Bondock S, Youns M (2014) Anticancer activity of new coumarin substituted hydrazide–hydrazone derivatives. Eur J Med Chem 76:539–548

    Article  CAS  PubMed  Google Scholar 

  • Novinson T, Bhooshan B, Okabe T, Revankar GR, Robins RK, Senga K, Wilson HR (1976) Novel heterocyclic nitrofurfural hydrazones. In vivo antitrypanosomal activity. J Med Chem 19:512–516

    Article  CAS  Google Scholar 

  • Paula SSP, Yardilyb A, Rajasekharanc K, Reji TAF (2013) Synthesis of anticancer compounds 2-(4-amino-2-arylaminothiazol-5-oyl)-N-methylbenzimidazoles. Indian J Chem 52:560–564

    Google Scholar 

  • Prien O (2005) Target‐family‐oriented focused libraries for kinases—conceptual design aspects and commercial availability. ChemBioChem 6:500–505

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues T, Reker D, Welin M, Caldera M, Brunner C, Gabernet G, Schneider P, Walse B, Schneider G (2015) De Novo fragment design for drug discovery and chemical biology. Angew Chem Int Ed 54:15079–15083

    Article  CAS  Google Scholar 

  • Rollas S, Küçükgüzel SG (2007) Biological activities of hydrazone derivatives. Molecules 12:1910–1939

    Article  CAS  PubMed  Google Scholar 

  • Romagnoli R, Baraldi PG, Carrion MD, Cruz-Lopez O, Lopez Cara C, Basso G, Viola G, Khedr M, Balzarini J, Mahboobi S (2009) 2-Arylamino-4-amino-5-aroylthiazoles.“One-pot” synthesis and biological evaluation of a new class of inhibitors of tubulin polymerization. J Med Chem 52:5551–5555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savini L, Chiasserini L, Travagli V, Pellerano C, Novellino E, Cosentino S, Pisano MB (2004) New α-(N)-heterocyclichydrazones: evaluation of anticancer, anti-HIV and antimicrobial activity. Eur J Med Chem 39:113–122

    Article  CAS  PubMed  Google Scholar 

  • Schneider G, Fechner U (2005) Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 4:649–663

    Article  CAS  PubMed  Google Scholar 

  • Schneider G, Schneider P (2016) Coping with complexity in ligand-based de novo design. Frontiers in molecular design and chemical information Science-Herman Skolnik Award Symposium 2015: Jürgen Bajorath. ACS Publications

  • Schrödinger (2014) Maestro, version 9.6. LLC, New York, NY

    Google Scholar 

  • Secci D, Bizzarri B, Bolasco A, Carradori S, D’Ascenzio M, Rivanera D, Mari E, Polletta L, Zicari A (2012) Synthesis, anti-Candida activity, and cytotoxicity of new (4-(4-iodophenyl) thiazol-2-yl) hydrazine derivatives. Eur J Med Chem 53:246–253

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S, Smitha SL, Thomas NE, Santhoshkumar TR, Devi SK, Sreejalekshmi KG, Rajasekharan KN (2005) 4‐Amino‐5‐benzoyl‐2‐(4‐methoxyphenylamino) thiazole (DAT1): a cytotoxic agent towards cancer cells and a probe for tubulin‐microtubule system. Br J Pharmacol 145:1076–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheppard DW, MacRitchie JA (2013) Building in molecular diversity for targeted libraries. Drug Discov Today 10:e461–e466

    Article  Google Scholar 

  • Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Chen W, Kang D, Zhang Q, Zhan P, Liu X (2014) “Old friends in new guise”: exploiting privileged structures for scaffold re-evolution/refining. Comb Chem High Throughput Screen 17:536–553

    Article  CAS  PubMed  Google Scholar 

  • Sreejalekshmi K (2010) A facile, sequential multicomponent approach to N-aminoamidinothioureas—versatile synthons to bioactive heterocycles. Phosphorus Sulfur Silicon 185:1830–1837

    Article  CAS  Google Scholar 

  • Tian F-F, Jiang F-L, Han X-L, Xiang C, Ge Y-S, Li J-H, Zhang Y, Li R, Ding X-L, Liu Y (2010) Synthesis of a novel hydrazone derivative and biophysical studies of its interactions with bovine serum albumin by spectroscopic, electrochemical, and molecular docking methods. J Phys Chem B114:14842–14853

    Article  Google Scholar 

  • Titus S, Sreejalekshmi KG (2014) One-pot four-component synthesis of 4-hydrazinothiazoles: novel scaffolds for drug discovery. Tetrahedron Lett 55:5465–5467

    Article  CAS  Google Scholar 

  • Urich R, Wishart G, Kiczun M, Richters A, Tidten-Luksch N, Rauh D, Sherborne B, Wyatt PG, Brenk R (2013) De novo design of protein kinase inhibitors by in silico identification of hinge region-binding fragments. ACS Chem Biol 8:1044–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma G, Marella A, Shaquiquzzaman M, Akhtar M, Ali MR, Alam MM (2014) A review exploring biological activities of hydrazones. J Pharm Bioallied Sci 6:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1:1112–1116

    Article  CAS  PubMed  Google Scholar 

  • Welsch ME, Snyder SA, Stockwell BR (2010) Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol 14:347–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson RW, Odedra R, Heaton SP, Wedge SR, Keen NJ, Crafter C, Foster JR, Brady MC, Bigley A, Brown E (2007) AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clin Cancer Res 13:3682–3688

    Article  CAS  PubMed  Google Scholar 

  • Yan A, Wang L, Xu S, Xu J (2011) Aurora-A kinase inhibitor scaffolds and binding modes. Drug Discov Today 16:260–269

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Shi L, Ke S (2015) Acylhydrazone derivatives as potential anticancer agents: synthesis, bio-evaluation and mechanism of action. Bioorg Med Chem Lett 25:5772–5776

    Article  CAS  PubMed  Google Scholar 

  • Yurttaş L, Özkay Y, Kaplancıklı ZA, Tunalı Y, Karaca H (2013) Synthesis and antimicrobial activity of some new hydrazone-bridged thiazole-pyrrole derivatives. J Enzyme Inhib Med Chem 28:830–835

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

ST acknowledges IIST for financial support. Thanks are due to NIIST-TVM, IISER-TVM for support in NMR recording and ACTREC Mumbai for in vitro anticancer screening.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumaran G. Sreejalekshmi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titus, S., Sreejalekshmi, K.G. Enriching biologically relevant chemical space around 2-aminothiazole template for anticancer drug development. Med Chem Res 27, 23–36 (2018). https://doi.org/10.1007/s00044-017-2039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-017-2039-y

Keywords

Navigation