Skip to main content
Log in

The in vitro photodynamic activity, photophysical and photochemical research of a novel chlorophyll-derived photosensitizer

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Chlorophyll has always been used as the leading compound for photodynamic therapy drug development. In this paper, a novel methyl pyropheophorbide-a- derived photosensitizer, 3-acetyl-3-devinyl-131-dicyanomethylene-pyropheophorbide-a was synthesized through modifications at C-131, C-3, and C-17 positions of methyl pyropheophorbide-a. The compound exhibited a longer wavelength absorption at 713 nm (in methanol) than that of methyl pyropheophorbide-a (667 nm) due to the enlarged the aromatic conjugation system by dicyanomethylene, allowing it to be potential in deep tumor treatment. Moreover, benefiting from the carboxylic group at C-17 and the acetyl group at C-3, the title compound was endowed with better water solubility than that of methyl pyropheophorbide-a. Detailed in vitro photodynamic therapy research showed ADCPPa could be uptaken by cancer cells successfully and killed the cancer cells more efficiently than the leading compound methyl pyropheophorbide-a under light (light dose 10 J/cm2) due to the high singlet oxygen quantum yield (65.98%). The excellent anti-photobleaching ability (degradation rate 1.6% in 10 min) also boosted its potential in practical application. In addition, the research has disclosed that during photochemical processes of photodynamic therapy, the formation of singlet oxygen after photodynamic therapy treatment played a major role, comparing with the formation of superoxide anion and radicals. Finally, the real time quantitative polymerase chain reaction (RT-qPCR) experiments have showed that the target compound has important regulating effect on expression of CDK2 and Survivin, consequently leading to apoptosis and cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281

    Article  PubMed  PubMed Central  Google Scholar 

  • Allison RR, Mota HC, Bagnato VS, Sibata CH (2008) Bio-nanotechnology and photodynamic therapy–state of the art review. Photodiagn Photodyn Ther 5:19–28

    Article  CAS  Google Scholar 

  • Altieri DC (2001) The molecular basis and potential role of Survivin in cancer diagnosis and therapy. Trends Mol Med 7:542–547

    Article  CAS  PubMed  Google Scholar 

  • Asano R, Nagami A, Fukumoto Y, Yazama F, Ito H, Sakata I, Tai A (2013) Synthesis and biological evaluation of new chlorin derivatives as potential photosensitizers for photodynamic therapy. Bioorg Med Chem 21:2298–2304

    Article  CAS  PubMed  Google Scholar 

  • Ashikaga T, Wada M, Kobayashi H, Mori M, Katsumura Y, Fukui H, Kato S, Yamaguchi M, Takamatsu T (2000) Effect of the photocatalytic activity of TiO2 on plasmid DNA. Mutat Res 466:1–7

    Article  CAS  PubMed  Google Scholar 

  • Belfield KD, Bondar MV, Przhonska OV (2005) Singlet oxygen quantum yield determination for a fluorene-based two-photon photosensitizer. J fluoresc 16:111–117

    Article  Google Scholar 

  • Berneburg M, Gretherbeck S, Kurten V, Ruzicka T, Briviba K, Sies H, Krutmann J (1999) Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion. J Biol Chem 274:15345–15349

    Article  CAS  PubMed  Google Scholar 

  • Bonnett R, Martínez G (2002) Photobleaching of compounds of the 5, 10, 15, 20-Tetrakis (m-hydroxyphenyl) porphyrin series (m-THPP, m-THPC, and m-THPBC). Org Lett 4:2013–2016

    Article  CAS  PubMed  Google Scholar 

  • Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 1776:86–107

    CAS  PubMed  Google Scholar 

  • Cabuy E (2012) Photodynamic therapy in cancer treatment. Reliable cancer therapies. Energy based Ther 3:1–54

    Google Scholar 

  • Cheng J, Li W, Tan G, Wang Z, Li S, Jin Y (2017) Synthesis and in vitro photodynamic therapy of chlorin derivative 131-ortho-trifluoromethyl-phenylhydrazone modified pyropheophorbide-a. Biomed Pharmacother 87:263–273

    Article  CAS  PubMed  Google Scholar 

  • Dewaele M, Verfaillie T, Martinet W, Agostinis P (2010) Death and survival signals in photodynamic therapy. Methods Mol Biol 635:7–33

    Article  CAS  PubMed  Google Scholar 

  • Eichwurzel I, Stiel H, Röder B (2000) Photophysical studies of the pheophorbide a dimer. J Photochem Photobiol B 54:194–200

    Article  CAS  PubMed  Google Scholar 

  • Garg H, Suri P, Gupta JC, Talwar GP, Dubey S (2016) Survivin: a unique target for tumor therapy. Cancer Cell Int 16:49–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo M, Mao H, Li Y, Zhu A, He H, Yang H, Wang Y, Tian X, Ge C, Peng Q, Wang X, Yang X, Chen X, Liu G, Chen H (2014) Dual imaging-guided photothermal/photodynamic therapy using micelles. Biomaterials 35:4656–4666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han GF, Wang JJ, Shim YK (2001) The bromination on methyl pyropheophorbide-a for constructing chlorin-bromine building block and its application. J Photosci 8:71–73

    CAS  Google Scholar 

  • Hu J, Tang Y, Elmenoufy AH, Xu H, Cheng Z, Yang X (2015) Nanocomposite‐based photodynamic therapy strategies for deep tumor treatment. Small 11:5860–5887

    Article  CAS  PubMed  Google Scholar 

  • Ivanov AS, Boldyrev AI (2014) Deciphering aromaticity in porphyrinoids via adaptive natural density partitioning. Org Biomol Chem 12:6145–6150

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhang X, Liu Y, Yoon I, Kim DK, Yin JG, Wang JJ, Shim YK (2015) Synthesis, optical properties and preliminary in vitro photodynamic effect of pyridyl and quinoxalyl substituted chlorins. Bioorg Med Chem 23:1684–1690

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhang P, Yao N, Zhao L, Wang J, Shim YK (2014) Convenient peripheral aroyloxylation reactions of porphyrins and chlorophyll- a -based chlorins with benzoyl peroxide. Tetrahedron Lett 55(5):1086–1089

    Article  CAS  Google Scholar 

  • Li Q, Wang X, Zhang K, Li X, Liu Q, Wang P (2013) DNA damage and cell cycle arrest induced by protoporphyrin IX in sarcoma 180 Cells. Cell Physiol Biochem 32:778–788

    Article  CAS  PubMed  Google Scholar 

  • Li W, Tan G, Cheng J, Zhao L, Wang Z, Jin Y (2016) A novel photosensitizer 31,131-phenylhydrazine-Mppa (BPHM) and its in vitro photodynamic therapy against HeLa cells. Molecules 21:558–570

    Article  Google Scholar 

  • Li W, Zhu G, Li J, Wang Z, Jin Y (2016) An amidochlorin-based colorimetric fluorescent probe for selective Cu2 + detection. Molecules 21:107–117

    Article  Google Scholar 

  • Liu G, Qin H, Amano T, Murakami T, Komatsu N (2015) Direct fabrication of the craphene-based composite for cancer phototherapy through graphite exfoliation with a photosensitizer. ACS Appl Mater Inter 7:23402–23406

    Article  CAS  Google Scholar 

  • Lu K, He C, Lin W (2014) Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J Am Chem Soc 136:16712–16715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luna MC, Wong S, Gomer CJ (1994) Photodynamic therapy mediated induction of early response genes. Cancer Res 54:1374–1380

    CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166

    Article  CAS  PubMed  Google Scholar 

  • Mroz P, Yaroslavsky A, Kharkwal GB, Hamblin MR (2011) Cell death pathways in photodynamic therapy of cancer. Cancers 3:2516–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noimark S, Dunnill CW, Parkin IP (2013) Shining light on materials—a self-sterilising revolution. Adv Drug Deliver Rev 65:570–580

    Article  CAS  Google Scholar 

  • Nowis D, Stokłosa T, Legat M, Issat T, Jakóbisiak M, Gołąb J (2005) The influence of photodynamic therapy on the immune response. Photodiagn Photodyn Ther 2:283–298

    Article  CAS  Google Scholar 

  • O’Connor AE, Gallagher WM, Byrne AT (2009) Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem Photobiol 85:1053–1074

    Article  PubMed  Google Scholar 

  • Payne JT, McCaw DL, Casteel SW, Frazier D, Rogers K, Tompson RV (1996) Pharmacokinetics of pyropheophorbide-a-hexyl ether in the dog. Laser Surg Med 18:406–409

    Article  CAS  Google Scholar 

  • Phillips D (2010) Light relief: photochemistry and medicine. Photochem Photobiol Sci 9:1589–1596

    Article  CAS  PubMed  Google Scholar 

  • Ramalho AS, Beck S, Farinha CM, Clarke LA, Heda GD, Steiner B, Sanz JR, Gallati S, Amaral MD, Harris A, Tzetis M (2004) Methods for RNA extraction, cDNA preparation and analysis of CFTR transcripts. J Cyst Fibros 3:11–15

    Article  CAS  PubMed  Google Scholar 

  • Shammas MA, Shmookler Reis RJ, Akiyama M, Koley H, Chauhan D, Hideshima T, Goyal RK, Hurley LH, Anderson KC, Munshi NC (2003) Telomerase inhibition and cell growth arrest by G-quadruplex interactive agent in multiple myeloma. Mol Cancer Ther 2:825–833

    CAS  PubMed  Google Scholar 

  • Silva EF, Schaberle FA, Monteiro CJ, Dąbrowski JM, Arnaut LG (2013) The challenging combination of intense fluorescence and high singlet oxygen quantum yield in photostable chlorins–a contribution to theranostics. Photochem Photobiol Sci 12:1187–1192

    Article  CAS  PubMed  Google Scholar 

  • Smith KM, Goff DA, Simpson DJ (1985) The meso substitution of chlorophyll derivatives: direct route for transformation of bacteriopheophorbides d into bacteriopheophorbides c. J Am Chem Soc 107:4946–4954

    Article  CAS  Google Scholar 

  • Sosnik A, Carcaboso AM (2014) Nanomedicines in the future of pediatric therapy. Adv Drug Deliver Rev 73:140–141

    Article  CAS  Google Scholar 

  • Sparrow JR, Zhou J, Cai B (2003) DNA is a target of the photodynamic effects elicited in A2E-Laden RPE by bule-light illumination. Invest Ophthalmol Vis Sci 44:2245–2251

    Article  PubMed  Google Scholar 

  • Staron J, Boron B, Karcz D, Szczygieł M, Fiedor L (2015) Recent Progress in chemical modifications of chlorophylls and bacteriochlorophylls for the applications in photodynamic therapy. Curr Med Chem 2:3054–3074

    Article  Google Scholar 

  • Sun X, Leung WN (2002) Photodynamic therapy with pyropheophorbide-a methyl ester in human lung carcinoma cancer cell: efficacy, localization and apoptosis. Photochem Photobiol 75:644–651

    Article  CAS  PubMed  Google Scholar 

  • Tu S, Wai-Yin Sun R, Lin MC, Tao Cui J, Zou B, Gu Q, Kung HF, Che CM, Wong BC (2009) Gold (III) porphyrin complexes induce apoptosis and cell cycle arrest and inhibit tumor growth in colon cancer. Cancer 115:4459–4469

    Article  CAS  PubMed  Google Scholar 

  • Tuncel S, Trivella A, Atilla D, Bennis K, Savoie H, Albrieux F (2013) Assessing the dual activity of a chalcone-phthalocyanine conjugate: design, synthesis, and antivascular and photodynamic properties. Mol Pharmacol 10:3706–3716

    Article  CAS  Google Scholar 

  • Vail SA, Evans DR, Pan W (2014) Long wavelength absorbing porphyrin photosensitizers for dye-sensitized solar cells. US Patent US8907081 B2, 9 Dec 2014

  • Volgger V, Betz CS (2016) Photodynamic therapy in the upper aerodigestive tract. Overview and outlook. J Biophotonics 9:1302–1313

    Article  PubMed  Google Scholar 

  • Voon SH, Kiew LV, Lee HB, Lim SH, Noordin MI, Kamkaew A, Burgess K, Chung LY (2014) In vivo studies of nanostructure-based photosensitizers for photodynamic cancer therapy. Small 10:4993–5013

    CAS  PubMed  Google Scholar 

  • Wan Z, Mao H, Guo M, Li Y, Zhu A, Yang H, He H, Shen J, Zhou L, Jiang Z, Ge C, Chen X, Yang X, Liu G, Chen H (2014) Highly efficient hierarchical micelles integrating photothermal therapy and singlet oxygen-synergized chemotherapy for cancer eradication. Theranostics 4:399–411

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang C, Tao H, Cheng L, Liu Z (2011) Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 32(26):6145–6154

    Article  CAS  PubMed  Google Scholar 

  • Wang JJ, Li JZ, Jakus J, Shim YK (2012) Synthesis of long-wavelength chlorins by chemical modification for methyl pyropheophorbide-a and their in vitro cell viabilities. J Porphyr Phthalocyanines 16:122–129

    Article  CAS  Google Scholar 

  • Williams WV, Rosenbaum H, Weiner DB (1992) Effect of RNA concentration on cDNA synthesis for DNA amplification. Genome Res 2:86–88

    Article  CAS  Google Scholar 

  • Yang Y, Guo Q, Chen H, Zhou Z, Guo Z, Shen Z (2013) Thienopyrrole-expanded BODIPY as a potential NIR photosensitizer for photodynamic therapy. Chem Commun 49:3940–3942

    Article  CAS  Google Scholar 

  • Yoon HK, Lou X, Chen YC, Koo Lee YE, Yoon E, Kopelman R (2014) Nano-photosensitizers engineered to generate a tunable mix of reactive oxygen species, for optimizing photodynamic therapy, using a microfluidic device. Chem Mater 26:1592–1600

    Article  CAS  PubMed  Google Scholar 

  • Yu CL, Chen S, Zhang MH, Shen T (2001) Spectroscopic studies and photodynamic actions of hypocrellin B in liposomes. Photochem Photobiol 73:482–488

    Article  CAS  PubMed  Google Scholar 

  • Zhang LJ, Bian J, Bao LL, Chen HF, Yan YJ, Wang L, Chen ZL (2014) Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo. J Can Res Clin 140:1527–1536

    Article  CAS  Google Scholar 

  • Zhang XH, Zhang LJ, Sun JJ, Yan YJ, Zhang LX, Chen N, Chen ZL (2016) Photodynamic efficiency of a chlorophyll-a derivative in vitro and in vivo. Biomed Pharmacother 81:265–272

    Article  CAS  PubMed  Google Scholar 

  • Zimcik P, Miletin M, Kopecky K, Musil Z, Berka P, Horakova V (2007) Influence of aggregation on interaction of lipophilic, water-insoluble azaphthalocyanines with DOPC vesicles. Photochem Photobiol 83:1497–1504

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support of this research was provided by National Natural Science Foundation of China (No. 20972036, 21272048, 21471041), the Natural Science Foundation of Heilongjiang Province (No.B20913), the Program for Scientific Technological Innovation Team Construction in the Universities of Heilongjiang Province (No. 211TD010), the Scientific Research Fund of Heilongjiang Provincial Education Department (No.12531194), the Natural Science Youth Foundation of Heilongjiang Province (No. QC2016011) and the Innovation Fund for Graduate Students of Harbin Normal University

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengyu Qu, Changhong Guo or Yingxue Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, G., Wang, Q., Zhang, H. et al. The in vitro photodynamic activity, photophysical and photochemical research of a novel chlorophyll-derived photosensitizer. Med Chem Res 26, 2639–2652 (2017). https://doi.org/10.1007/s00044-017-1962-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-017-1962-2

Keywords

Navigation