Skip to main content
Log in

Beneficial effects of hydroalcoholic extract and flavonoids from Zuccagnia punctata in a rabbit model of vascular dysfunction induced by high cholesterol diet

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

This study evaluated the effects of a Zuccagnia punctata standardized hydroalcoholic extract (ZpE) and three of its major flavonoids [2′,4′-dihydroxychalcone (DHC), 7-hydroxyflavanone (HF) and 3,7-dihydroxyflavone (DHF)] on the vascular reactivity of aortic rings with endothelial dysfunction induced by feeding rabbits on a high cholesterol diet. Rabbits were fed with either normal chow or a diet containing 1% cholesterol for 5–6 weeks. Isometric contractions were measured. Concentration response curves to ZpE (range from 4 × 10−2 to 4 × 10 µg gallic acid equivalent/ml), DHC, DHF or HF (range from 10−9 to 10−4 M) showed concentration-dependent relaxation of arteries pre-contracted with phenylephrine. ZpE (4 × 10−2, 4 × 10−1 and 4 µg gallic acid equivalent/ml), HF (10−9, 10−7, 10−5 M), DHC (10−9 M) and DHF (10−9 M) added to the bath improved acetylcholine affinity. Pre-treatment of arteries with ZpE (4 × 10−2 µg gallic acid equivalent/ml) and DHC (10−9 M) reduced phenylephrine-induced contraction. Incubation with the higher dose of ZpE (4 µg gallic acid equivalent/ml) reduced the angiotensin II-maximal contraction (C max) acting as a non-competitive antagonist, while DHC and DHF (10−5 M) caused a non-parallel rightward of the angiotensin II-concentration response curves and reduced the C max acting as mixed antagonists. ZpE (4 × 10−2 µg gallic acid equivalent/ml), DHC and DHF (10−9 M) caused a rightward displacement of angiotensin II-concentration response curves acting as competitive antagonists. In conclusion, the present study demonstrated that a ZpE and its major flavonoids had beneficial effects in arteries with vascular dysfunction induced by hypercholesterolemia. Therefore its use as herbal medicine to prevent cardiovascular risks factors may be promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agüero MB, González M, Lima B, Svetaz L, Sánchez M, Zacchino S, Egly Feresin G, Schmeda-Hirschmann G, Palermo J, Wunderlin D, Tapia A (2010) Argentinean propolis from Zuccagnia punctata Cav. (Caesalpinieae) exudates: phytochemical characterization and antifungal activity. J Agric Food Chem 58:194–201

    Article  PubMed  Google Scholar 

  • Ajay M, Achike FI, Mustafa MR (2007) Modulation of vascular reactivity in normal, hypertensive and diabetic rat aortae by a non-antioxidant flavonoid. Pharmacol Res 55:385–391

    Article  CAS  PubMed  Google Scholar 

  • Ajay M, Gilani AH, Mustafa MR (2003) Effects of flavonoids on vascular smooth muscle of the isolated rat thoracic aorta. Life Sci 74:603–612

    Article  CAS  PubMed  Google Scholar 

  • Ajay M, Mustafa MR (2005) Chronic treatment with flavonoids prevents endothelial dysfunction in spontaneously hypertensive rat aorta. J Cardiovasc Pharmacol 46:36–40

    Article  Google Scholar 

  • Balasuriya NBW, Vasantha Rupasinghe HP (2011) Plant flavonoids as angiotensin converting enzyme inhibitors in regulation of hypertension. Funct Foods Health Dis 5:172–188

    Google Scholar 

  • Butassi E, Svetaz LA, Ivancovich JJ, Feresin GE, Tapia A, Zacchino SA (2015) Synergistic mutual potentiation of antifungal activity of Zuccagnia punctata Cav. and Larrea nitida Cav. extracts in clinical isolates of Candida albicans and Candida glabrata. Phytomedicine 22:666–678

    Article  PubMed  Google Scholar 

  • Chan ECH, Pannangpetch P, Woodman OL (2000) Relaxation of flavones and flavonols in rat isolated thoracic aorta: mechanism of action and structure–activity relationships. J Cardiovasc Pharmacol 5:326–333

    Article  Google Scholar 

  • Dong X, Wang Y, Liu T, Wu P, Gao J, Xu J, Yang B, Hu Y (2011) Flavonoids as vasorelaxant agents: synthesis, biological evaluation and quantitative structure activities relationship (QSAR) studies. Molecules 16:8257–8272

    Article  CAS  PubMed  Google Scholar 

  • Duarte J, Pérez Palencia R, Vargas F, Ocete MA, Perez-Vizcaino F, Zarzuelo A, Tamargo J (2001) Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. Br J Pharmacol 133:117–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte J, Pérez Vizcaíno F, Utrilla P, Jiménez J, Tamargo J, Zarzuelo A (1993) Vasodilatory effects of flavonoids in rat aortic smooth muscle. Structure–activity relationships. Gen Pharmacol 24:857–862

    Article  CAS  PubMed  Google Scholar 

  • Ghosh D, Scheepens A (2009) Vascular action of polyphenols. Mol Nutr Food Res 53:322–331

    Article  CAS  PubMed  Google Scholar 

  • Gleason MM, Medow MS, Tulenko TN (1991) Excess membrane cholesterol alters calcium movements, cytosolic calcium levels, and membrane fluidity in arterial smooth muscle cells. Circ Res 69:216–227

    Article  CAS  PubMed  Google Scholar 

  • Grassi D, Desideri G, Ferri C (2010) Flavonoids: antioxidants against atherosclerosis. Nutrients 2:889–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure–activity relationships. J Nutr Biochem 13:572–584

    Article  CAS  PubMed  Google Scholar 

  • Herrera DH, Zarzuelo A, Jimenez J, Marhuenda E, Duarte J (1996) Effects of flavonoids on rat aortic smooth muscle contractility: structure-activity relationships. Gen Pharmacol 27:273–277

    Article  CAS  PubMed  Google Scholar 

  • Huai R, Han X, Wang B, Li C, Niu Y, Li R, Qu Z (2014) Vasorelaxing and antihypertensive effects of 7,8-dihydroxyflavone. Am J Hypertens 27:750–760

    Article  CAS  PubMed  Google Scholar 

  • Jerez S, Sierra L, Coviello A, Peral de Bruno M (2008) Endothelial dysfunction and improvement of the angiotensin II-reactivity in hypercholesterolemic rabbits: role of cyclooxygenase metabolites. Eur J Pharmacol 580:182–189

    Article  CAS  PubMed  Google Scholar 

  • Jerez S, Sierra L, Scacchi F, Peral de Bruno M (2010) Hypercholesterolemia modifies angiotensin II desensitization and cross talk between alpha 1-adrenoceptor and angiotensin AT1 receptor in rabbit aorta. Eur J Pharmacol 635:149–155

    Article  CAS  PubMed  Google Scholar 

  • Jespersen B., Tykocki NR, Watts SW, Cobbett PJ (2015). Measurement of smooth muscle function in the isolated tissue bath-applications to pharmacology research. J Vis Exp. (95), e52324, doi:10.3791/52324

  • Morán Vieyra F, Boggetti H, Zampini IC, Ordoñez RM, Isla MI, Alvarez RMS, De Rosso V, Mercadante AZ, Borsarelli CD (2009) Singlet oxygen quenching and radical scavenging capacities of structurally related flavonoids present in Zuccagnia punctata Cav. Free Radic Res 43:553–564

    Article  Google Scholar 

  • Moreno A, Nuño G, Cuello S, Sayago JE, Alberto MR, Zampini C, Isla MI (2015a) Anti-inflammatory, antioxidant and antimicrobial activity characterization and toxicity studies of flowers of “jarilla”, a medicinal shrub from Argentina. Nat Prod Commun 6:991–994

    Google Scholar 

  • Moreno MA, Mercado MI, Nuño G, Zampini IC, Cuello AS, Ponessa GI, Sayago JE, Isla MI (2015b) Histochemical localization and characterization of chalcones in foliar surface of Zuccagnia punctata Cav. Insight into their physiological role. Phytochem Lett 13:134–140

    Article  CAS  Google Scholar 

  • Pederiva R, Giordano OS (1984) 3,7-Dihydroxy-8-methoxyflavone from Zuccagnia punctata. Phytochemistry 23:1340–1341

    Article  CAS  Google Scholar 

  • Serafini M, Peluso I, Raguzzini A (2010) Flavonoids as anti-inflammatory agents. Proc Nutr Soc 69:273–278

    Article  CAS  PubMed  Google Scholar 

  • Svetaz L, Tapia A, López SN, Furlán RLE, Petenatti E, Pioli R, Schmeda-Hirschmann G, Zacchino SA (2004) Antifungal chalcones and new caffeic acid esters from Zuccagnia punctata acting against soybean infecting fungi. J Agric Food Chem 52:3297–3300

    Article  CAS  PubMed  Google Scholar 

  • Tapas AR, Sakarkar DM, Kakde RB (2008) Flavonoids as nutraceuticals: a review. Trop J Pharm Res 7:1089–1099

    Article  Google Scholar 

  • Ulibarri EA (2005) Zuccagnia punctata (Leguminosae) ¿Nuevo o viejo endemismo argentino? Darwiniana 43:212–215

    Google Scholar 

  • Vessal M, Hemmati M, Vasei M (2003) Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp Biochem Physiol C 135C:357–364

    CAS  Google Scholar 

  • Yang BC, Phillips MI, Mohuczy D, Meng H, Shen L, Mehta P, Mehta JL (1998) Increased angiotensin II type 1 receptor expression in hypercholesterolemic atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 18:1433–1439

    Article  CAS  PubMed  Google Scholar 

  • Zampini IC, Villena J, Salva S, Herrera M, Isla MI, Alvarez S (2012) Potentiality of standardized extract and isolated flavonoids from Zuccagnia punctata for the treatment of respiratory infections by Streptococcus pneumoniae: in vitro and in vivo studies. J Ethnopharmacol 140:287–292

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Consejo de Investigaciones de la Universidad Nacional de Tucumán (PIUNT I521/1), Consejo de Investigaciones Científicas y Técnicas de la República Argentina (CONICET PIP 11-232), and Institutional funds from INSIBIO (Instituto Superior de Investigaciones Biológicas). We thank veterinary Rosa Alejandra Molina for bioterio management and Ms Erika Georgieff for her help in data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Jerez.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roco, J., Alarcón, G., Sierra, L. et al. Beneficial effects of hydroalcoholic extract and flavonoids from Zuccagnia punctata in a rabbit model of vascular dysfunction induced by high cholesterol diet. Med Chem Res 26, 2336–2344 (2017). https://doi.org/10.1007/s00044-017-1934-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-017-1934-6

Keywords

Navigation