Skip to main content
Log in

Synthesis and antimicrobial activity of pyrimidinyl bis(benzazoles)

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A new class of pyrimidinyl bis(benzoxazoles/benzothiazoles/benzimidazoles) linked by amino sulfamido moieties were prepared and tested for antimicrobial activity. The bis(benzazolyl)pyrimidines (9, 10) displayed higher activity than the corresponding azolyl pyrimidines (47). In fact, bis(benzimidazolylamino)pyrimidinylsulfamide (9c), bis(benzothiazolylmethylamino)pyrimidinylsulfamide (10b), bis(benzimidazolylmethylamino)-pyrimidinylsulfamide (10c) were found to be potential antimicrobial agents against S. aureus and P. chrysogenum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Wahab BF, Abdel-Aziz HA, Ahmed EM (2009) Synthesis and antimicrobial evaluation of 1-(benzofuran-2-yl)-4-nitro-3-arylbutan-1-ones and 3-(benzofuran-2-yl)-4,5-dihydro-5-aryl-1-[4-(aryl)-1,3-thiazol-2-yl]-1H-pyrazoles. Eur J Med Chem 44:2632–2635

    Article  CAS  PubMed  Google Scholar 

  • Azoro C (2002) Antibacterial activity of crude aqeous extracts of Azadirachta indica on Salmonella typhi. World J Biotechnol 3:347–351

    Google Scholar 

  • Balaswamy G, Srinivas K, Pradeep P, Sarangapani M (2012) Synthesis characterization and antimicrobial activity of novel substituted benzoxazole derivatives. Int J Chem Sci 10:619–626

    CAS  Google Scholar 

  • Ban M, Taguchi H, Katsushima T, Aoki S, Watanabe A (1998) Novel antiallergic agents part I: synthesis and pharmacology of pyrimidine amide derivatives. Bioorg Med Chem 6:1057–1067

    Article  CAS  PubMed  Google Scholar 

  • Bishnu J, Sunil L, Anuja S (2009) Antibacterial property of different medicinal plants: Ocimum sanctum, Cinnamomum zeylanicum, Xanthoxylum armatum and Origanum majorana. J Sci Eng Technol 5:143–150

    Google Scholar 

  • Bradshaw TD, Westwell AD (2004) The development of the antitumour benzothiazole prodrug, phortress as a clinical candidate. Curr Med Chem 11:1009–1021

    Article  CAS  PubMed  Google Scholar 

  • Chung KT, Thomasson WR, Wu-Yuan CD (1990) Growth inhibition of selected food-borne bacteria, particularly Listeria monocytogenes, by plant extracts. J Applied Bacteriol 69:498–503

    Article  CAS  Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI), reference method for broth dilution antifungal susceptibility testing of yeasts, approved standard—third Edition. CLSI document M27-A3; Wayne, PA 2008

  • Clinical and Laboratory Standards Institute, methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard—ninth edition. CLSI document M07-A9; Wayne, PA 2012

  • Fache F, Schulz E, Tommasino ML, Lemaire M (2000) Nitrogen-containing ligands for asymmetric homogenous and heterogenous catalysis. Chem Rev 100:2159–2231

    Article  CAS  PubMed  Google Scholar 

  • Gumus F, Algul O, Eren G, Eroglu H, Diril N, Gur S, Ozkul A (2003) Synthesis, cytotoxic activity on MCF-7 cell line and mutagenic activity of platinum(II) complexes with 2-substituted benzimidazole ligands. Eur J Med Chem 38:473–480

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Rawat S (2010) Synthesis and cyclization of benzothiazole: review. J Curr Pharm Res 3:13–23

    Google Scholar 

  • Hili R, Yudin AK (2006) Making carbon-nitrogen bonds in biological and chemical synthesis. Nat Chem Biol 2:284–287

    Article  CAS  PubMed  Google Scholar 

  • Janovska D, Kubikov K, Kokoska L (2003) Screening for antimicrobial activity of some medicinal plants species of traditional chinese medicine. Czech J Food Sci 21:107–110

    Google Scholar 

  • Jyothi M, Ramchander M (2013) Antibacterial and antifungal activity of some newly substituted benzoxazoles. Int J Chem Tech Res 5:2425–2428

    CAS  Google Scholar 

  • Kamal A, Srinivasa Reddy K, Naseer A, Khan M, Rajesh VCRNCS, Janaki Ramaiah M, Pushpavalli SNCVL, Srinivas C, Pal-Bhadra M, Chourasia M, Narahari Sastry G, Juvekar A, Zingde S, Barkume M (2010) Synthesis, DNA-binding ability and anticancer activity of benzothiazole/benzoxazole–pyrrolo[2,1-c][1,4]benzo-diazepine conjugates. Bioorg Med Chem 18:4747–4761

    Article  CAS  PubMed  Google Scholar 

  • Kaniwa K, Ohtsuki T, Yamamoto K, Ishibashi M (2006) Kehokorins A-C, novel cytotoxic dibenzofurans isolated from the myxomycete Trichia favogineavar. persimilis. Tetrahedron Lett 47:1505–1508

    Article  CAS  Google Scholar 

  • Kumar D, Jacob MR, Reynolds MB, Kerwin SM (2002) Synthesis and evaluation of anticancer benzoxazoles and benzimidazoles related to UK-1. Bioorg Med Chem 10:3997–4004

    Article  CAS  PubMed  Google Scholar 

  • Mariappan G, Prabhat P, Sutharson L, Banerjee J, Patangia U, Nath S (2012) Synthesis and antidiabetic evaluation of benzothiazole derivatives. J Korean Chem Soc 56:251–256

    Article  CAS  Google Scholar 

  • Messina F, Botta M, Corelli F, Paladino A (2000) Chiral azole derivatives. Part 5: synthesis of enantiomerically pure 1-[(benzofuran-2-yl)arylmethyl]-1H-1,2,4-triazoles, antifungal and antiaromatase agents. Tetrahedron: Asymmetry 11:4895–4901

    Article  CAS  Google Scholar 

  • Miwa T, Hitaka T, Akimoto H, Nomurat H (1991) Novel Pyrrolo[2,3-d]pyrimidine antifolates: synthesis and antitumor activities. J Med Chem 34:555–560

    Article  CAS  PubMed  Google Scholar 

  • Paget CJ, Kisner K, Stone RL, Delong DC (1969) Heterocyclic substiutued urease.II. Immunosuppressive and antiviral activity of benzothiazole and benzoxazoleureas. J Med Chem 12:1016–1018

    Article  CAS  PubMed  Google Scholar 

  • Pilyugin V, Sapozhnikov Y, Davydov A, Chikisheve G, Vorobeva T, Klimakova E, Kiseleva G, Kuznetosova S, Davletov R, Sapozhnikov N, Yamadilov R (2006) 13C NMR spectra and biological activity of N-(1H-benzimidazolyl-2-yl)benzamides. Russ J Gen Chem 76:1653–1659

    Article  CAS  Google Scholar 

  • Pretorius SI, Breytenbach WJ, de Kock C, Smith PJ, N’Da DD (2013) Synthesis, characterization and antimalarial activity of quinoline-pyrimidine hybrids. Bioorg Med Chem 21:269–277

    Article  CAS  PubMed  Google Scholar 

  • Rajyalakshmi G, Rama Narasimha Reddy A, Sarangapani M (2011) Synthesis, characterization, anticancer and antioxidant activities of some novel N-(benzo[d]oxazol-2-yl)-2-(7or5-substituted-2-oxoindolin-3-ylidene)hydrazine carbox- amide derivatives. J Enzyme Inhib Med Chem 26:813–818

    Article  Google Scholar 

  • Seenaiah D, Ramachandra Reddy P, Mallikarjuna Reddy G, Padmaja A, Padmavathi V, Siva krishna N (2014) Synthesis, antimicrobial and cytotoxic activities of pyrimidinyl benzoxazole, benzothiazole and benzimidazole. Eur J Med Chem 77:1–7

    Article  CAS  PubMed  Google Scholar 

  • Severo S, Stella F, Claudio T, Frank P, Peg D, Yusuke S, Akihiro A, Ewa DM, Lawrence HL, Gianfranco B (2008) Role of benzimidazole (Bid) in the δ–opiod agonist pseudopeptide H-Dmt-Tic-NH-CH2-Bid (UFP-502). Bioorg Med Chem 16:3032–3038

    Article  Google Scholar 

  • Sommer PSM, Almeida RC, Schneider K, Beil W, Süssmuth RD, Fiedler HP (2008) Nataxazole, a new benzoxazole derivative with antitumor activity produced by streptomyces sp. Tü 6176. J Antibiot 61:683–686

    Article  CAS  PubMed  Google Scholar 

  • Sondhi SM, Singh N, Johara M, Kumar A (2005) Synthesis, anti-inflammatory and analgesic activities evaluation of some mono, bi and tricyclic pyrimidine derivatives. Bioorg Med Chem 13:6158–6166

    Article  CAS  PubMed  Google Scholar 

  • Srinivas A, Vidya Sagar J, Raju J, Rama G, Sarangapani M (2010) Design, synthesis and biological evaluation of benzoxazole derivatives as cyclooxygenase inhibitors. Der Pharma Chemica 2:189–199

    Google Scholar 

  • Srinivas Rao N, Kistareddy C, Balram B, Ram B (2012) Synthesis and antibacterial activity of novel imidazo[1,2-a]pyrimidine and imidazo[1,2-a]pyridine chalcones derivatives. Der Pharma Chemica 4:2408–2415

    Google Scholar 

  • Sun L, Wu J, Zhang L, Luo M, Sun D (2011) Synthesis and antifungal activity of some novel pyrimidine derivatives. Molecules 16:5618–5628

    Article  CAS  Google Scholar 

  • Surry DS, Buchwald SL (2011) Dialkylbiaryl phosphines in Pd-catalyzed amination: a user’s guide. Chem Sci 2:27–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SB, Deng XQ, Zheng Y, Yuan YP, Quan ZS, Guan LP (2012a) Synthesis and evaluation of anticonvulsant and antidepressant activities of 5-alkoxytetrazolo[1,5-c]thieno[2,3-e]pyrimidine derivatives. Eur J Med Chem 56:139–144

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Song X, Shao S, Zhong H, Lin F (2012b) An efficient, soluble and recyclable multiwalled carbon nanotubes-supported TEMPO for oxidation of alcohols. Rsc Adv 2:7693–7698

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors V. Padmavathi is grateful to Council of Scientific and Industrial Research (CSIR), New Delhi for financial assistance under major research project. The DST-PURSE, Sri Venkateswara University, Tirupati, India is gratefully acknowledged for antimicrobial activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatapuram Padmavathi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seenaiah, D., Rekha, T., Padmaja, A. et al. Synthesis and antimicrobial activity of pyrimidinyl bis(benzazoles). Med Chem Res 26, 431–441 (2017). https://doi.org/10.1007/s00044-016-1758-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1758-9

Keywords

Navigation