Skip to main content

Advertisement

Log in

Cytotoxic and anticancer activities of an acridine derivative; 11-chloro-3-methyl-3H-imidazo[4,5-a]acridine on 5637 cells

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Acridine derivatives are capable of interacting with double-stranded DNA. Some essential enzymes such as DNA topoisomerase I, II and telomerase are the biological targets of these compounds in cancer chemotherapy. 11-chloro-3-methyl-3H-imidazo[4,5-a]acridine is a novel synthetic acridine derivative with antibacterial properties. Selective induction of apoptosis in tumor cells is the characteristic of some clinically effective anticancer drugs. In this study, the cytotoxicity and apoptosis inducing effects of 11-chloro-3-methyl-3H-imidazo[4,5-a]acridine on 5637 cancerous and HFF3 (human foreskin fibroblast) normal cells were investigated for the first time. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay showed that the cytotoxic effects of 11-chloro-3-methyl-3H-imidazo[4,5-a]acridine were more pronounced on 5637 cells in comparison to HFF3 normal cells. 4′,6-diamidino-2-phenylindole staining of 5637 cells demonstrated the presence of condensed chromatin in majority of cells (60 %) which is indicative of apoptosis induction. Besides the results of comet assay revealed that 11-chloro-3-methyl-3H-imidazo[4,5-a]acridine treatment resulted in 10 folds greater DNA damage in cancerous cells (62 %) as compared to normal cells (6 %). Flow cytometry analysis of 5637 cells after propidium iodide staining revealed that 11-chloro-3-methyl-3H-imidazo[4,5-a]acridine causes apoptosis by cell cycle arrest in sub-G1 peak in a time-dependent manner. Moreover, evaluation of caspase 3 activity showed that this compound significantly increased caspase 3 activity in 5637 cells as compared with control cells. Therefore, it can be concluded that 11-chloro-3-methyl-3H-imidazo[4,5-a]acridine has selective cytotoxic and anticancer effects on 5637 cells and a high potential to induce apoptosis. This caspase-dependent apoptotic induction was resulted from DNA damage, which may arise from inhibition of DNA topoisomerase I and/or II activity. Although further studies are required to determine its mechanism in vivo, 11-chloro-3-methyl-3H-imidazo[4,5-a]acridine can be introduced as a potential anticancer compound for further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bailly C (2012) Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem Rev 112:3611–3640

    Article  CAS  PubMed  Google Scholar 

  • Barros WAF, Bezerra PD, Ferreira MPP, Cavalcanti CB, Silva GT, Pitta GRM, De Lima ACM, Galdino LS, Pitta RI, Costa-Lotufo VL, Henriques APJ, Pessoa C (2013) Inhibition of DNA topoisomerase I activity and induction of apoptosis by thiazacridine derivatives. Toxicol Appl Pharm 268:37–46

    Article  CAS  Google Scholar 

  • Belmont P, Bosson J, Godet T, Tiano M (2007) Acridine and acridone derivatives, anticancer properties and synthetic methods: where are we now? Anticancer Agents Med Chem 7:139–169

    Article  CAS  PubMed  Google Scholar 

  • Cholody WM, Kosakowska-Cholody T, Hollingshead MG, Hariprakasha HK, Michejda CJ (2005) A new synthetic agent with potent but selective cytotoxic activity against cancer. J Med Chem 48:4474–4481

    Article  CAS  PubMed  Google Scholar 

  • Cholody WM, Martelli S, Paradziej-Lukowicz J, Konopa J (1990) 5[(aminoalkyl)amino]imidazo[4,5,1-de]acridin-6-ones as a novel class of antineoplastic agents. Synthesis and biological activity. J Med Chem 33:49–52

    Article  CAS  PubMed  Google Scholar 

  • Da Rocha Pitta MG, Souza ÉS, Barros FWA, Moraes Filho MO, Pessoa CO, Hernandes MZ, de Lima MdCA, Galdino SL, da Rocha Pitta I (2013) Synthesis and in vitro anticancer activity of novel thiazacridine derivatives. Med Chem Res 22:2421–2429

    Article  Google Scholar 

  • Degterev A, Boyce M, Yuan J (2003) A decade of caspases. Oncogene 22:8543–8567

    Article  CAS  PubMed  Google Scholar 

  • De Marco C, Zaffaroni N, Comijn E, Tesei A, Zoli W, Peters GJ (2007) Comparative evaluation of C1311 cytotoxic activity and interference with cell cycle progression in a panel of human solid tumour and leukaemia cell lines. Int J Oncol 31:907–913

    PubMed  Google Scholar 

  • Demeunynck M (2004) Antitumour acridines. Expert Opin Ther Pat 14:55–70

    Article  CAS  Google Scholar 

  • Denny WA (2002) Acridine derivatives as chemotherapeutic agents. Curr Med Chem 9:1655–1665

    Article  CAS  PubMed  Google Scholar 

  • Denny WA (2004) Chemotherapeutic effects of acridine derivatives. Med Chem Rev 1:257–266

    CAS  Google Scholar 

  • Egusquiaguirre SP, Igartua M, Hernandez RM, Pedraz JL (2012) Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin Transl Oncol 14:83–93

    Article  CAS  PubMed  Google Scholar 

  • Finlay GJ, Atwell GJ, Baguley BC (1999) Inhibition of the action of the topoisomerase II poison amsacrine by simple aniline derivatives: evidence for drugprotein interactions. Oncol Res 11:249–254

    CAS  PubMed  Google Scholar 

  • Fulda S, Debatin KM (2004) Targeting apoptosis pathways in cancer therapy. Curr Cancer Drug Targets 4:569–576

    Article  CAS  PubMed  Google Scholar 

  • Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25:4798–4811

    Article  CAS  PubMed  Google Scholar 

  • Ghosh R, Bhowmik S, Guha D (2012) 9-phenyl acridine exhibits antitumour activity by inducing apoptosis in A375 cells. Mol Cell Biochem 361:55–66

    Article  CAS  PubMed  Google Scholar 

  • Gohulkumar M, Gurushankar K, Rajendra Prasad N, Krishnakumar N (2014) Enhanced cytotoxicity and apoptosis-induced anticancer effect of silibinin-loaded nanoparticles in oral carcinoma (KB) cells. Mater Sci Eng C Mater Biol Appl 41:274–282

    Article  CAS  PubMed  Google Scholar 

  • Goodell JR, Madhok AA, Hiasa H, Ferguson DM (2006) Synthesis and evaluation of acridine- and acridone-based anti-herpes agents with topoisomerase activity. Bioorg Med Chem 14:5467–5480

    Article  CAS  PubMed  Google Scholar 

  • Goodell JR, Ougolkov AV, Hiasa H, Kaur H, Remmel R, Billadeau DD, Ferguson DM (2007) Acridine-based agents with topoisomerase II activity inhibit pancreatic cancer cell proliferation and induce apoptosis. J Med Chem 51:179–182

    Article  PubMed  Google Scholar 

  • Gottesman MM (1993) How cancer cells evade chemotherapy: sixteenth Richard and Hinda Rosenthal Foundation Award Lecture. Cancer Res 53:747–754

    CAS  PubMed  Google Scholar 

  • Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  CAS  PubMed  Google Scholar 

  • Huerta S, Goulet EJ, Huerta-Yepez S, Livingston EH (2007) Screening and detection of apoptosis. J Surg Res 139:143–156

    Article  CAS  PubMed  Google Scholar 

  • Kamal A, Srinivas O, Ramulu P, Ramesh G, Kumar PP (2004) Synthesis of C8-linked pyrrolo[2,1-c][1,4]benzodiazepine-acridone/acridine hybrids as potential DNA binding agents. Bioorg Med Chem Lett 14:4107–4111

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann SH, Earnshaw WC (2000) Induction of apoptosis by cancer chemotherapy. Exp Cell Res 256:42–49

    Article  CAS  PubMed  Google Scholar 

  • Kaufman DS, Shipley WU, Feldman AS (2009) Bladder cancer. Lancet 374:239–249

    Article  CAS  PubMed  Google Scholar 

  • Ketabforoosh SH, Kheirollahi A, Safavi M, Esmati N, Ardestani SK, Emami S, Firoozpour L, Shafiee A, Foroumadi A (2014) Synthesis and anti-cancer activity evaluation of new dimethoxylated chalcone and flavanone analogs. Arch Pharm (Weinheim) 347:853–860

    Article  CAS  Google Scholar 

  • Kohn KW (1996) Beyond DNA cross-linking: history and prospects of DNA-targeted cancer treatment-fifteenth Bruce F. Cain Memorial Award Lecture. Cancer Res 56:5533–5546

    CAS  PubMed  Google Scholar 

  • Kukowska-Kaszuba M, Dzierzbicka K (2007) Synthesis and structure-activity studies of peptide-acridine/acridone conjugates. Curr Med Chem 14:3079–3104

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Sharma A, Sharma S, Silakari O, Singh M, Kaur M (2013) Synthesis, characterization and antitumor activity of 2-methyl-9-substituted acridines. Arab J Chem. doi:10.1016/j.arabjc.2012.12.035

  • Lang X, Li L, Chen Y, Sun Q, Wu Q, Liu F, Tan C, Liu H, Gao C, Jiang Y (2013) Novel synthetic acridine derivatives as potent DNA-binding and apoptosis inducing antitumor agents. Bioorg Med Chem 21:4170–4177

    Article  CAS  PubMed  Google Scholar 

  • Lerman LS (1963) The structure of the DNA-acridine complex. Proc Natl Acad Sci U S A 49:94–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma YS, Weng SW, Lin MW, Lu CC, Chiang JH, Yang JS, Lai KC, Lin JP, Tang NY, Lin JG, Chung JG (2012) Antitumor effects of emodin on LS1034 human colon cancer cells in vitro and in vivo: roles of apoptotic cell death and LS1034 tumor xenografts model. Food Chem Toxicol 50:1271–1278

    Article  CAS  PubMed  Google Scholar 

  • Mazerska Z, Sowinski P, Konopa J (2003) Molecular mechanism of the enzymatic oxidation investigated for imidazoacridinone antitumor drug, C-1311. Biochem Pharmacol 66:1727–1736

    Article  CAS  PubMed  Google Scholar 

  • Preet R, Mohapatra P, Mohanty S, Sahu SK, Choudhuri T, Wyatt MD, Kundu CN (2012) Quinacrine has anticancer activity in breast cancer cells through inhibition of topoisomerase activity. Int J Cancer 130:1660–1670

    Article  CAS  PubMed  Google Scholar 

  • Sadeghian A, Pordel M, Safdari H, Fahmidekar MA, Sadeghian H (2012) 11-chloro-3-methyl-3H-imidazo [4, 5-a] acridine (CMIA) as a potent and selective antimicrobial agent against clinical isolates of highly antibiotic-resistant Acinetobacter baumannii. Med Chem Res 21:3897–3901

    Article  CAS  Google Scholar 

  • Wesierska-Gadek J, Schloffer D, Gueorguieva M, Uhl M, Skladanowski A (2004) Increased susceptibility of poly(ADP-ribose) polymerase-1 knockout cells to antitumor triazoloacridone C-1305 is associated with permanent G2 cell cycle arrest. Cancer Res 64:4487–4497

    Article  CAS  PubMed  Google Scholar 

  • Winter RW, Kelly JX, Smilkstein MJ, Dodean R, Hinrichs D, Riscoe MK (2008) Antimalarial quinolones: synthesis, potency, and mechanistic studies. Exp Parasitol 118:487–497

    Article  CAS  PubMed  Google Scholar 

  • Ziegler DS, Kung AL (2008) Therapeutic targeting of apoptosis pathways in cancer. Curr Opin Oncol 20:97–103

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from Ferdowsi University of Mashhad. The authors are grateful to Dr. Fatemeh B. Rassouli, Azadeh Haghighitalab, and Mohammad Nakhaei for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam M. Matin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanzadeh, H., Bahrami, A.R., Sadeghian, H. et al. Cytotoxic and anticancer activities of an acridine derivative; 11-chloro-3-methyl-3H-imidazo[4,5-a]acridine on 5637 cells. Med Chem Res 25, 1852–1860 (2016). https://doi.org/10.1007/s00044-016-1637-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1637-4

Keywords

Navigation