Skip to main content
Log in

Pyridine-catalyzed synthesis of quinoxalines as anticancer and anti-tubercular agents

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Quinoxaline derivatized with coumarin viz., 3af and with sydnones viz., 7a0 were synthesized using pyridine as catalyst. Among the coumarin derivatives, 3a and 3b have been screened for anticancer activity against 60 human cancer cell lines at NIH (USA). Compound 3a has shown 55.75 % GI against Melanoma (MALME-M) tumor cell line. Further, the sydnone derivatives 7di inhibited the Mycobacterium tuberculae H37RV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2

Similar content being viewed by others

References

  • Abu-Hashem AA, Gouda MA, Badria FA (2010) Synthesis of some new pyrimido[2′,1′:2,3]thiazolo[4,5-b]quinoxaline derivatives as anti- inflammatory and analgesic agents. Eur J Med Chem 45:1976–1981

    Article  CAS  PubMed  Google Scholar 

  • Bansode S, Kamble R (2012) Synthesis of novel 2-(3′-arylsydnon-4′-ylidene)-5′-substituted-[1,3,4]-thiadiazolylamines and [1,3,4]-thiadiazol-2′-yl-3-oxo-[1,2,4]-triazoles as antimicrobial agents. Med Chem Res 21:867–873

    Article  CAS  Google Scholar 

  • Chandra Shekhar A, Shanthan Rao P, Narsaiah B, Allanki AD, Singh PS (2014) Emergence of pyrido quinoxalines as new family of antimalarial agents. Eur J Med Chem 77:280–287

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar R, Nanjan MJ (2012) Sydnones: a brief review. Mini Rev Med Chem 12:1359–1365

    CAS  PubMed  Google Scholar 

  • Cooke D, Fitzpatrick B, O’Kennedy R, McCormack T, Egan D (1997) Coumarins—multifaceted molecules with many analytical and other applications. In: Kennedy RO, Thornes RD (eds) Coumarins: biology, applications and mode of action. Wiley, Chichester, pp 303–332

    Google Scholar 

  • Dalia HS (2013) Synthesis, characterization, anti-bacterial and anti-fungal activities of new quinoxaline 1,4-di-N-oxide derivatives. Int J Org Chem 3:65–72

    Article  Google Scholar 

  • Dorababu A, Kamble RR, Kattimani PP, Kariduraganavar MY, Kamble AA (2014) Ceric ammonium nitrate catalysed stereoselective synthesis of β-aminoketones using 3-Aryl-4-formylsydnones. Lett Org Chem 11:244–249

    Article  CAS  Google Scholar 

  • Esther V, Raquel V, Asuncio´n B, Beatriz S, Silvia P, Ignacio A, Joseph AM, Anne JL, Scott GF, Sang-hyun C, Antonio M, Robert CG (2008) Efficacy of quinoxaline-2-carboxylate 1,4-Di-N-oxide derivatives in experimental tuberculosis. Antimicrob Agents Chemother 52:3321–3326

    Article  Google Scholar 

  • Fun HK, Chia TS, Nitinchandra Kalluraya B, Shetty S (2012) 4-Bromoacetyl-3-phenylsydnone. Acta Cryst E 68:o2103

    Article  CAS  Google Scholar 

  • Gireesh TM, Kamble RR, Taj T, Kattimani PP, Meti GY (2013) Synthesis of novel imidazo[2,1-b][1,3,4]thiadiazoles appended to sydnone as anticancer agents. Med Chem Res 22:4367–4375

    Article  Google Scholar 

  • Hadda TB, Rahima B, Kerbal A, Bouchra FB, Akkurt M, Demailly G, Benazza M (2007) Synthesis and antitubercular activity of spiroheterocycles: 2,2′,4′,5′-tetra-substituted-1,2,2′,4′-tetrahydro-4H-spiro[isoquinoline-3,3′-pyrazol]-4-ones. ARKIVOC xiv: 276–288. http://dtp.nic.nih.gov/docs/compare.html

  • Kattimani PP, Kamble RR, Kariduraganavar MY, Dorababu A, Hunnur RK (2013) Synthesis, characterization and in vitro anticancer evaluation of novel 1,2,4-triazolin-3-one derivatives. Eur J Med Chem 62:232–240

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni MV, Patil VD, Biradar VN, Nanjappa S (1981) Synthesis and biological properties of some 3-heterocyclic substituted coumarins. Arch Pharm 314:435–439

    Article  CAS  Google Scholar 

  • Mohamed GT, Serry AAEB, Magda NAN (2015) Synthesis and biological evaluation of new 3-(4-substituted phenyl)aminoquinoxaline derivatives as anticancer agents. Heterocycl Commun 21:25–35

    Google Scholar 

  • Musiliyu AM, Badisa VLD, Lekan ML, John C, Andre S, Ahkinyala A (2011) Cytotoxic activity of new acetoxycoumarin derivatives in cancer cell lines. Anticancer Res 31:2017–2022

    Google Scholar 

  • Noolvi MN, Patel HM, Bhardwaj V, Chauhan A (2011) Synthesis and in vitro antitumor activity of substituted quinazoline and quinoxaline derivatives: search for anticancer agent. Eur J Med Chem 46:2327–2346

    Article  CAS  PubMed  Google Scholar 

  • Patel AK, Patel NH, Patel MA, Brahmbhatt DI (2010) Synthesis, characterization and antimicrobial activity of some 4-aryl-2,6-di(coumarin-3-yl)pyridines. ARKIVOC 11:28–38

    Google Scholar 

  • Puratchikody A, Natarajan R, Jayapal M, Doble M (2011) Synthesis, in vitro antitubercular activity and 3D-QSAR of novel quinoxaline derivatives. Chem Biol Drug Des 78:988–998

    Article  CAS  PubMed  Google Scholar 

  • Radhia EA, Jianrong L, Sophie B, Damien C, Olivier C, Jean-Michel C, Elisabeth MN, Emmanuel M (2014) Synthesis and biological evaluation of new quinoxaline derivatives of ICF01012 as melanoma-targeting probes. ACS Med Chem Lett 5:468–473

    Article  Google Scholar 

  • Rao GK, Kotnal RB, Pai PNS (2009) Synthesis and evaluation of N′-((substituted phenyl) methylidene)-2-(3-methyl-2-oxoquinoxalin-l (2H)-yl)acetohydrazide for possible antibacterial and antifungal activities. Intl J Biol Chem 3:71–77

    Article  CAS  Google Scholar 

  • Sahm DF, Washington JA (1991) II: Antibacterial susceptibility tests: dilution Methods. In: Balows A (ed) Manual of clinical microbiology, 5th edn. American Society for Microbiology, Washington, DC, pp 1105–1116

    Google Scholar 

  • Sandra P (2004) Quinoxaline chemistry, synthesis of methyl [4-(Substituted-2-quinoxalinyloxy)phenyl] acetate and evaluation of anticancer activity. II FARMCO 59:185–194

    Article  Google Scholar 

  • Taj T, Raikar SV, Kamble RR (2014) Synthetic utility of sydnones to couple pharmacologically important heterocycles for antitubercular activity. Arab J Chem 7:900–905

    Article  CAS  Google Scholar 

  • Tegginamath G, Kamble RR, Kattimani PP, Dorababu A, Manikantha M, Hoskeri JH (2013) Synthesis of sydnone substituted biginelli derivatives as hyaluronidase inhibitors. Arch Pharm Chem Life Sci 346:1–9

    Google Scholar 

  • Zhiwei C, Jianhao B, Weike S (2013) Synthesis and antitumor activity of novel coumarin derivatives via a three-component reaction in water. Chin J Chem 31:507–514

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the NCI, NIH, Bethesda, USA for selecting samples for in vitro anticancer analyses under DTP. The authors are grateful to NGH College of Dental sciences, Belgaum, Karnataka, India for anti-tubercular activity. The authors wish to thank the University Scientific Instrumentation Centre (USIC), Karnataka University, Dharwad, NMR Research Centre, Indian Institute of Science (IISc), Bengaluru, India for carrying out the spectral analyses. The authors (AAK and RRK) are also thankful to UGC, New Delhi for providing financial assistant under UGC-UPE thrust area “Antitumor activity: An Integrated Approach”. Vide F. No. 14-3/2012 (NS/PE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra R. Kamble.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2035 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamble, A.A., Kamble, R.R., Kumbar, M.N. et al. Pyridine-catalyzed synthesis of quinoxalines as anticancer and anti-tubercular agents. Med Chem Res 25, 1163–1174 (2016). https://doi.org/10.1007/s00044-016-1558-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1558-2

Keywords

Navigation