Skip to main content
Log in

Structural insights into the ligand-binding hot spots of APEX1: an in silico analysis

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Human apurinic/apyrimidinic endonuclease (APEX1) is a multifunctional protein involved in the repair of DNA damage. It plays a vital role in the base excision repair. Overexpression of APEX1 is observed in a variety of cancers. High APEX1 expression has been associated with deprived result to radio and chemotherapy. It also plays an important role in therapeutic agent resistance and disease suppression. If APEX1 activities could be regulated, the protein would be a favorable and efficient cancer target. So far, inhibitor binding site of APEX1 is not studied in detail. The present study focuses on the identification of ligand-binding hot spot residues of APEX1. Docking studies were performed on seventy-one recently reported APEX1 inhibitors. The docking results identified that most of the compounds with biphenyl moiety occupied the same binding site. Majority of compounds were found to form hydrogen bond interaction with Asn174, Arg156, His309, Tyr128, Asn212, Arg181 and Asn226 and hydrophobic interaction with Phe266, Trp280 and Tyr128. The results could provide useful structural insights about the binding mode of APEX1 inhibitors and the crucial hot spot residues which are essential for ligand recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbotts R, Madhusudan S (2010) Human AP endonuclease 1 (APE1): from mechanistic insights to druggable target in cancer. Cancer Treat Rev 36(5):425–435

    Article  CAS  PubMed  Google Scholar 

  • Al-Safi RI, Odde S S, Shabaik Y, Neamati N (2012) Small-molecule inhibitors of APE1 DNA repair function: an overview. Curr Mol Pharmacol 5(1):14–35

    Article  CAS  PubMed  Google Scholar 

  • Barnes T, Kim WC, Mantha AK, Kim SE, Izumi T, Mitra S, Lee CH (2009) Identification of apurinic/apyrimidinic endonuclease 1 (APE1) as the endoribonuclease that cleaves c-myc mRNA. Nucleic Acids Res 37(12):3946–3958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beernink PT, Segelke BW, Hadi MZ, Erzberger JP, Wilson DM, Rupp B (2001) Two divalent metal ions in the active site of a new crystal form of human apurinic/apyrimidinic endonuclease, Ape1: implications for the catalytic mechanism. J Mol Biol 307(4):1023–1034

    Article  CAS  PubMed  Google Scholar 

  • Carey DC, Strauss PR (1999) Human apurinic/apyrimidinic endonuclease is processive. Biochemistry 38(50):16553–16560

    Article  CAS  PubMed  Google Scholar 

  • Demple B, Harrison L (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63:915–948

    Article  CAS  PubMed  Google Scholar 

  • Dyrkheeva N, Khodyreva S, Lavrik O (2007) Multifunctional human apurinic/apyrimidinic endonuclease 1: role of additional functions. Mol Biol 41(3):402–416

    Article  CAS  Google Scholar 

  • Fan Z, Beresford PJ, Zhang D, Xu Z, Novina CD, Yoshida A, Pommier Y, Lieberman J (2003) Cleaving the oxidative repair protein Ape1 enhances cell death mediated by granzyme A. Nat Immunol 4(2):145–153

    Article  CAS  PubMed  Google Scholar 

  • Fishel ML, Kelley MR (2007) The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target. Mol Asp Med 28(3–4):375–395

    Article  CAS  Google Scholar 

  • Fung H, Demple B (2005) A vital role for Ape1/Ref1 protein in repairing spontaneous DNA damage in human cells. Mol Cell 17(3):463–470

    Article  CAS  PubMed  Google Scholar 

  • Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA (2008) DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 8:193–204

    Article  CAS  PubMed  Google Scholar 

  • Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28(6):1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Izumi T, Brown DB, Naidu C, Bhakat KK, MacInnes MA, Saito H, Chen DJ, Mitra S (2005) Two essential but distinct functions of the mammalian abasic endonuclease. Proc Natl Acad Sci USA 102(16):5739–5743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim WC, Berquist BR, Chohan M, Uy C, Wilson DM III, Lee CH (2011) Characterization of the endoribonuclease active site of human apurinic/apyrimidinic endonuclease 1. J Mol Biol 411(5):960–971

    Article  CAS  PubMed  Google Scholar 

  • Li M, Wilson DM III (2014) Human apurinic/apyrimidinic endonuclease 1. Antioxid Redox Signal 20(4):678–707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu D, Silhan J, MacDonald JT, Carpenter EP, Jensen K, Tang CM, Baldwin GS, Freemont PS (2012) Structural basis for the recognition and cleavage of abasic DNA in Neisseria meningitidis. Proc Natl Acad Sci 109(42):16852–16857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo M, Delaplane S, Jiang A, Reed A, He Y, Fishel M, Nyland RL, Borch RF, Qiao X, Georgiadis MM (2008) Role of the multifunctional DNA repair and redox signaling protein Ape1/Ref-1 in cancer and endothelial cells: small-molecule inhibition of the redox function of Ape1. Antioxid Redox Signal 10(11):1853–1867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madhusudan S, Middleton MR (2005) The emerging role of DNA repair proteins as predictive, prognostic and therapeutic targets in cancer. Cancer Treat Rev 31(8):603–617

    Article  CAS  PubMed  Google Scholar 

  • Manvilla BA, Pozharski E, Toth EA, Drohat AC (2013) Structure of human apurinic/apyrimidinic endonuclease 1 with the essential Mg2 + cofactor. Acta Crystallogr 69(12):2555–2562

    CAS  Google Scholar 

  • Masuda Y, Bennett RA, Demple B (1998) Rapid dissociation of human apurinic endonuclease (Ape1) from incised DNA induced by magnesium. J Biol Chem 273(46):30360–30365

    Article  CAS  PubMed  Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  • Mundle ST, Fattal MH, Melo LF, Coriolan JD, O’Regan NE, Strauss PR (2004) Novel role of tyrosine in catalysis by human AP endonuclease 1. DNA Repair 3(11):1447–1455

    Article  CAS  PubMed  Google Scholar 

  • Naidu MD, Agarwal R, Pena LA, Cunha L, Mezei M, Shen M, Wilson DM III, Liu Y, Sanchez Z, Chaudhary P (2011) Lucanthone and its derivative hycanthone inhibit apurinic endonuclease-1 (APE1) by direct protein binding. PLoS One 6(9):e23679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rothwell DG, Hickson ID (1996) Asparagine 212 is essential for abasic site recognition by the human DNA repair endonuclease HAP1. Nucleic Acids Res 24(21):4217–4221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Srinivasan A, Wang L, Cline CJ, Xie Z, Sobol RW, Xie XQ, Gold B (2012) Identification and characterization of human apurinic/apyrimidinic endonuclease-1 inhibitors. Biochemistry 51(31):6246–6259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tell G, Quadrifoglio F, Tiribelli C, Kelley MR (2009) The many functions of APE1/Ref-1: not only a DNA repair enzyme. Antioxid Redox Signal 11(3):601–619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vascotto C, Cesaratto L, Zeef LA, Deganuto M, D’Ambrosio C, Scaloni A, Romanello M, Damante G, Taglialatela G, Delneri D (2009) Genome-wide analysis and proteomic studies reveal APE1/Ref-1 multifunctional role in mammalian cells. Proteomics 9(4):1058–1074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson SH (1998) Mammalian base excision repair and DNA polymerase beta. Mutat Res 407:203–215

    Article  CAS  PubMed  Google Scholar 

  • Wilson DM III, Bohr VA (2007) The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair 6(4):544–559

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Irani K, Heffron SE, Jurnak F, Meyskens FL (2005) Alterations in the expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1) in human melanoma and identification of the therapeutic potential of resveratrol as an APE/Ref-1 inhibitor. Mol Cancer Ther 4(12):1923–1935

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Luo M, Marasco D, Logsdon D, LaFavers KA, Chen Q, Reed A, Kelley MR, Gross ML, Georgiadis MM (2013) Inhibition of apurinic/apyrimidinic endonuclease I’s redox activity revisited. Biochemistry 52(17):2955–2966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zou GM, Maitra A (2008) Small-molecule inhibitor of the AP endonuclease 1/REF-1 E3330 inhibits pancreatic cancer cell growth and migration. Mol Cancer Ther 7:2012–2021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Joo Cho.

Additional information

Pavithra K. Balasubramanian and Anand Balupuri have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 551 kb)

Supplementary material 2 (DOCX 807 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balasubramanian, P.K., Balupuri, A. & Cho, S.J. Structural insights into the ligand-binding hot spots of APEX1: an in silico analysis. Med Chem Res 24, 3242–3246 (2015). https://doi.org/10.1007/s00044-015-1379-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-015-1379-8

Keywords

Navigation