Skip to main content
Log in

Synthesis, docking study, and DNA photocleavage activity of some pyrimidinyl hydrazones and 3-(quinolin-3-yl)-5,7-dimethyl-1,2,4-triazolo[4,3-a]pyrimidine derivatives

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In the present study, synthesis of a series of some novel 3-(Quinolin-3-yl)-5,7-dimethyl-1,2,4-triazolo[4,3-a]pyrimidine derivatives (4ae) has been achieved by oxidative cyclization of new pyrimidinyl hydrazone intermediates (3ae) using hypervalent iodine reagent(III) under mild conditions. The structures of all synthesized compounds were established on the basis of IR, NMR (1H and 13C), mass spectral data, and elemental analysis. All compounds were evaluated for their DNA photocleavage activity. Compounds 4a, 4b, 4d and 3ae were found to possess good activity at 40 μg/μl concentration and were mainly responsible for the conversion of supercoiled form of DNA into open circular form. Further, docking study was carried out using Molegro Virtual Docker version 2010.4.2.0 using PDB (1AB4) in support of the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. inter-convertible between 5′ and 7′.

References

  • Abdel-Wahab BF, Khidre RE, Farahat AA, El-Ahl AAS (2012) 2-Chloroquinoline-3-carbaldehydes: synthesis, reactions and applications. ARKIVOC i:211–276.

  • Aggarwal R, Kumar V, Tyagi P, Singh SP (2006) Synthesis and antibacterial study of some new 1-heteroaryl-5-amino-3H/methyl-4-phenylpyrazole. Bioorg Med Chem 14:1785–1791

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal R, Sumran G, Kumar V, Mittal A (2011) Copper (II) chloride mediated synthesis and DNA photocleavage activity of 1-aryl/heteroaryl-4-substituted-1,2,4-triazolo[4,3-a]quinoxalines. Eur J Med Chem 46:6083–6088

    Article  CAS  PubMed  Google Scholar 

  • Allen CFH, Reynolds GA, Tinker JF, Williams LA (1960) Structure of certain polyazaindenes. V Synth J Org Chem 25:361–366

    CAS  Google Scholar 

  • Aravinda T, Naik HSB, Naik HRP (2009) 1,2,3-Triazole fused quinoline-peptidomimetics: studies on synthesis, DNA binding and photonuclease activity. Int J Pept Res Ther 15:273–279

    Article  CAS  Google Scholar 

  • Atwell GJ, Baguley BC, Denny WA (1989) Potential antitumor agents. 57. 2-Phenylquinoline-8-carboxamides as minimal DNA-intercalating antitumor agents with in vivo solid tumor activity. J Med Chem 32:396–401

    Article  CAS  PubMed  Google Scholar 

  • Bekhit AA, El-Sayed OA, Aboulmagd E, Park JY (2004) Tetrazolo[1,5-a]quinoline as a potential promising scaffold for the synthesis of novel anti-inflammatory and antibacterial agents. Eur J Med Chem 39:249–255

    Article  CAS  PubMed  Google Scholar 

  • Bindu PJ, Mahadevan KM, Satyanarayan ND, Naik TRR (2012) Synthesis and DNA cleavage studies of novel quinoline oxime esters. Bioorg Med Chem Lett 22:898–900

    Article  CAS  PubMed  Google Scholar 

  • Cairns H, Cox D, Gould KJ, Ingall AH, Suschitzky JL (1985) New antiallergic pyrano[3,2-g]quinoline-2,8-dicarboxylic acids with potential for the topical treatment of asthma. J Med Chem 28:1832

    Article  CAS  PubMed  Google Scholar 

  • Chen YL, Chen IL, Tzeng CC, Wang TC (2000) Synthesis and cytotoxicity evaluation of certain α-methylidene-γ-butyrolactones bearing coumarin, flavones, xanthone, carbazole and dibenzofuran moieties. Helv Chim Acta 83:989–994

    Article  CAS  Google Scholar 

  • Chia EW, Pearce AN, Berridge MV, Larsen L, Perry NB, Sansom CE, Godfrey CA, Hanton LR, Lu GL, Walton M, Denny WA, Webb VL, Copp BR, Harper JL (2008) Synthesis and anti-inflammatory structure- activity relationships of thiazine-quinoline-quinones: inhibitors of the neutrophil respiratory burst in a model of acute gouty arthritis. Bioorg Med Chem 21:9432–9442

    Article  Google Scholar 

  • Dandia A, Sarawgia P, Arya K, Khaturia S (2006) Mild and ecofriendly tandem synthesis of 1,2,4-triazolo[4,3-a]pyrimidines in aqueous medium. ARKIVOC xvi:83–92.

  • Daniels JS, Gates KS (1996) DNA cleavage by antitumor agent 3-Amino-1,2,4-benzotriazine 1,4-dioxide (SR4233): evidence for involvement of hydroxyl radical. J Am Chem Soc 118:3380–3385

    Article  CAS  Google Scholar 

  • Dinakaran VS, Bomma B, Srinivasan KK (2012) Fused pyrimidines: the heterocycle of diverse biological and pharmacological significance. Der Pharma Chem 4:255–265

    CAS  Google Scholar 

  • El Ashry ESH, Rashed N (1999) 1,2,4-Triazolo- and Tetrazolo [x,y-z]pyrimidines. In: Katritzky AR (ed) Advances in heterocyclic chemistry, vol 72. Academic Press, London, pp 127–224

    Google Scholar 

  • Furniss BS, Hannaford AJ, Smith PWG, Tatchell AR (1989) Vogel’s textbook of practical organic chemistry, 5th edn. Longman Scientific & Technical, England, pp 916–917

    Google Scholar 

  • Ghosh S, Nie AH, An J, Huang ZW (2006) Structure-based virtual screening of chemical libraries for drug discovery. Curr Opin Chem Biol 10:194–202

    Article  CAS  PubMed  Google Scholar 

  • Gibson MS (1963) Hydrazone-IV the bromination of benzylidene 2-pyridylhydrazone. Tetrahedron 19:1587–1589

    Article  CAS  Google Scholar 

  • Guidi GD, Condorelli G, Costanzo LL, Giuffrida S, Monti S, Sortino S (1998) Molecular mechanisms of photosensitization induced by drugs on biological systems and design of photoprotective systems. In: Albini A, Fasani E (eds) Drugs: photochemistry and photostability. The Royal Society of Chemistry, Cambridge, pp 201–203

    Google Scholar 

  • Jain KS, Chitre TS, Miniyar PB, Kathiravan MK, Bendre VS, Veer VS, Shahane SR, Shishoo CJ (2006) Biological and medicinal significance of pyrimidines. Curr Sci 90:793–803

    CAS  Google Scholar 

  • Kaminsky D, Meltzer RI (1968) Quinoline antibacterial agents. Oxolinic acid and related compounds. J Med Chem 11:160–163

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Aggarwal R, Tyagi P, Singh SP (2005) Synthesis and antibacterial activity of some new 1-heteraryl-5-amino-4-phenyl-3-trifluoromethylpyrazoles. Eur J Med Chem 40:922–927

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Gupta GK, Kaur K, Singh R (2013) Fluorophenylhydrazones as potential COX-2 inhibitors: a novel, efficient, one pot solid phase synthesis, docking study and pharmacological evaluation. Med Chem Res 22:5890–5900

    Article  CAS  Google Scholar 

  • Kuo SC, Lee HZ, Juang JP, Lin YT, Wu TS, Chang JJ, Lednicer D, Paull KD, Lin CM, Hamel E, Lee KH (1993) Synthesis and cytotoxicity of 1,6,7,8-substituted 2-(4’-substituted phenyl)-4-quinolones and related compounds: identification as antimitotic agents interacting with tubulin. J Med Chem 36:1146–1156

    Article  CAS  PubMed  Google Scholar 

  • Marella A, Tanwar OP, Saha R, Ali MR, Srivastava S, Akhter M, Shaquiquzzaman M, Alam MM (2013) Quinoline: a versatile heterocyclic. Saudi Pharm J 21:1–12

    Article  PubMed Central  PubMed  Google Scholar 

  • Meth-Cohn O, Rhouati S, Tarnowski B, Robinson A (1981) A versatile new synthesis of quinolines and related fused pyridines. Part 8. Conversion of anilides into 3-substituted quinolines and into quinoxalines. J Chem Soc Perkin Trans 1:1537–1543

    Article  Google Scholar 

  • Nakamura T, Oka M, Aizawa K, Soda H, Fukuda M, Terashi K, Ikeda K, Mizuta Y, Noguchi Y, Kimura Y, Tsuruo T, Kohno S (1999) Direct interaction between a quinoline derivative, MS-209, and multidrug resistance protein (MRP) in human gastric cancer cells. Biochem Biophys Res Commun 255:618–624

    Article  CAS  PubMed  Google Scholar 

  • Oshiro Y, Sakurai Y, Sato S, Kurahashi N, Tanaka T, Kikuchi T, Tottori K, Uwahodo Y, Miwa T, Nishi T (2000) 3,4-Dihdro-2(1H)-quinolinone as a novel antidepressant drug: synthesis and pharmacology of 1-[3-[4-(3-Chlorophenyll)-1-piperazinyl]-3,4-dihydro-5-methoxy-2(1H)-quinolinone and its derivatives. J Med Chem 43:177–189

    Article  CAS  PubMed  Google Scholar 

  • Ozturk F, Acik L, Sener I, Karci F, Kilic E (2012) Antimicrobial properties and DNA interaction studies of 3-hetaryazoquinoline-2,4-diol compounds. Turk J Chem 36:293–302

    CAS  Google Scholar 

  • Pelaprat D, Oberlin R, Guen IL, Roques P (1980a) DNA intercalating compounds as potential antitumor agents. 1. Preparation and properties of 7H-pyridocarbazoles. J Med Chem 23:1330–1335

    Article  CAS  PubMed  Google Scholar 

  • Pelaprat D, Oberlin R, Guen IL, Roques P (1980b) DNA intercalating compounds as potential antitumor agents. 2. Preparation and properties of 7H-pyridocarbazoles dimmers. J Med Chem 23:1336–1343

    Article  CAS  PubMed  Google Scholar 

  • Pollak A, Tisler M (1966) Synthesis of pyridazine derivatives-V: formation of s-triazolo-(4,3-b)-pyridazines and bis-s-triazolo-(4,3-b,3’,4’-f)-pyridazines. Tetrahedron 22:2073–2079

    Article  CAS  Google Scholar 

  • Reddy PR, Raju N (2012) Gel-electrophoresis and its applications. In: Magdeldin S (ed) Gel electrophoresis-principles and basics. doi:10.5772/38479. http://www.intechopen.com/books/gel-electrophoresis-principles-and-basics/gel-electrophoresis-and-its-applications. Accessed 20 Sept 2013.

  • Saini RP, Kumar V, Gupta AK, Gupta GK (2014) Synthesis, characterization and antibacterial activity of a novel heterocyclic Schiff’s base and its metal complexes of first transition series. Med Chem Res 23:690–698

    Article  CAS  Google Scholar 

  • Selvam TP, James CR, Dniandev PV, Valzita SK (2012) A mini review of pyrimidine and fused pyrimidine marketed drugs. Res Pharm 2:1–9

    Google Scholar 

  • Shaban MAE, Morgaan AEA (1999) The chemistry of 1,2,4-triazolopyrimidine I: 1,2,4-triazolo[4,3-a]pyrimidines. In: Katritzky AR (ed) Advances in heterocyclic chemistry, vol 72. Academic Press, London, pp 131–177

    Google Scholar 

  • Strekowski L, Mokrosz JL, Honkan VA, Czarny A, Cegla MT, Patterson SE, Wydra RL, Schinazi RF (1991) Synthesis and quantitative structure- activity relationship analysis of 2-(aryl or heteroaryl)quinolin-4-amines, a new class of anti-HIV-1 agents. J Med Chem 34:1739–1746

    Article  CAS  PubMed  Google Scholar 

  • Thomsen R, Christensen MH (2006) MolDock: a new technique for high accuracy molecular docking. J Med Chem 49:3315–3321

  • Toshima K, Takano R, Maeda Y, Suzuki M, Asai A, Matsumura S (1999) 2-Phenylquinoline-carbohydrate hybrids: molecular design, chemical synthesis, and evaluation of a new family of light-activatable DNA-cleaving agents. Angew Chem Int Ed 38:3733–3735

    Article  CAS  Google Scholar 

  • Vorvoglis A (1997) Chemical transformation using hypervalent iodine reagents. Tetrahedron 53:1179–1255

    Article  Google Scholar 

  • Xia Y, Yang ZY, Xia P, Bastow KF, Tachibana Y, Kuo SC, Hamel E, Hackl T, Lee KH (1998) Antitumor agents. 181. Synthesis and biological evaluation of 6,7,2’,3’,4’-substituted-1,2,3,4-tetrahydro-2-phenyl-4-quinolines as a new class of antimitotic antitumor agents. J Med Chem 41:1155–1162

    Article  CAS  PubMed  Google Scholar 

  • Xiao Z, Waters NC, Woodard CL, Li PK (2001) Design and synthesis of Pfmrk inhibitors as potential antimalarial agents. Bioorg Med Chem Lett 11:2875–2878

    Article  CAS  PubMed  Google Scholar 

  • Yao W, Qian X (2001) Oxazolonaphthalimides and their hydroperoxides: photophysical and photobiological properties. Dyes Pigm 48:43–47

    Article  CAS  Google Scholar 

  • Zhdankin W (2009) Hypervalent iodine(III) reagents in organic synthesis. ARKIVOC i:1–62.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Kumar, V., Khare, R. et al. Synthesis, docking study, and DNA photocleavage activity of some pyrimidinyl hydrazones and 3-(quinolin-3-yl)-5,7-dimethyl-1,2,4-triazolo[4,3-a]pyrimidine derivatives. Med Chem Res 24, 1830–1841 (2015). https://doi.org/10.1007/s00044-014-1265-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1265-9

Keywords

Navigation