Skip to main content

Advertisement

Log in

Synthesis and antimicrobial activity of pyrazolinones and pyrazoles having benzothiazole moiety

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A new class of 4-arylhydrazono-1-benzothiazolyl-3-methylpyrazolin-5-ones (3aj) and 4-arylazo-1-benzothiazolyl-3,5-dimethylpyrazoles (4aj) were designed as pharmacophore hybrids between pyrazolinone/pyrazole and benzothiazole moiety. The target molecules were efficiently synthesized by the cyclization of various oxobutyrates/pentane-2,4-dione derivatives with 6-chloro-2-hydrazinobenzothiazole in the presence of glacial acetic acid. The compounds were evaluated for their in vitro antimicrobial activity. Preliminary study of the structure–activity relationship revealed that electron-withdrawing groups in phenyl ring had a promising effect on the antimicrobial activity. Also, correlation study has been used to establish the relationships between the antibacterial activity and physicochemical parameter clogP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

Similar content being viewed by others

References

  • Amir M, Agarwal R (1997) Synthesis and antibacterial activity of 1-thiocarbamoyl-3-methyl-4-(arylhydrazono)-2-pyrazolin-5-one. J Ind Chem Soc 74:154–155

    CAS  Google Scholar 

  • Amir M, Kumar H, Khan SA (2008a) Synthesis and pharmacological evaluation of pyrazoline derivatives as new anti-inflammatory and analgesic agents. Bioorg Med Chem Lett 18:918–922

    Article  PubMed  CAS  Google Scholar 

  • Amir M, Kumar H, Javed SA (2008b) Condensed bridgehead nitrogen heterocyclic system: Synthesis and pharmacological activities of 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole derivatives of ibuprofen and biphenyl-4-yloxy acetic acid. Eur J Med Chem 43:2056–2066

    Article  PubMed  CAS  Google Scholar 

  • Amir M, Kumar A, Ali I, Khan SA (2009) Synthesis of pharmaceutically important 1,3,4-thiadiazole and imidazolinone derivatives as antimicrobials. Indian J Chem 48B:1288–1293

    CAS  Google Scholar 

  • Amir M, Javed SA, Kumar H (2010) Design and synthesis of some 3-[3-(Substituted phenyl)-4-piperidin-1-ylmethyl/-4-morpholin-4-ylmethyl-4,5-dihydro-isoxazol-5-yl]-1H-indoles as potent anti-inflammatory agents. Med Chem Res 19:299–310

    Article  CAS  Google Scholar 

  • Anand N, Remers WA (2003) Synthetic antibacterial agents. In: Abrham D (ed) Burger’s medicinal chemistry and drug discovery, chemotherapeutic agents, vol 5, 6th edn. Wiley, New York, pp 537–596

    Google Scholar 

  • Andersson DI, Hughes D (2010) Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8:260–271

    PubMed  CAS  Google Scholar 

  • Arthington-Skaggs BA, Moltely M, Warnock DW, Morrison CJ (2000) Comparative evaluation of PASCO and national committee for clinical laboratory standards M27-A broth microdilution methods for antifungal drug susceptibility testing of yeasts. J Clin Microbiol 38:2254–2260

    PubMed  CAS  Google Scholar 

  • Barry AL (1980) Procedure for testing antimicrobial agents in agar media. In: Corian VL (ed) Antibiotics in laboratory medicine. Williams and Wilkins, Baltimore, pp 1–23

    Google Scholar 

  • Bondock S, Fadaly W, Metwally MA (2009) Recent trends in the chemistry of 2-aminobenzothiazoles. J Sulphur Chem 30:74–107

    Article  CAS  Google Scholar 

  • Bondock S, Fadaly W, Metwally MA (2010) Synthesis and antimicrobial activity of some new thiazole, thiophene and pyrazole derivatives containing benzothiazole moiety. Eur J Med Chem 45:3692–3701

    Article  PubMed  CAS  Google Scholar 

  • Brantley E, Antony S, Kohlhagen G, Meng L, Agama K, Stinson SF, Sausville EA, Pommier Y (2006) Anti-tumor drug candidate 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole induces single-strand breaks and DNA-protein cross-links in sensitive MCF-7 breast cancer cells. Cancer Chemother Pharmacol 58:62–72

    Article  PubMed  CAS  Google Scholar 

  • Castagnolo D, Manetti F, Radi M, Bechi B, Pagano M, De Logu A, Meleddu R, Saddi M, Botta M (2009) Synthesis, biological evaluation, and SAR study of novel pyrazole analogues as inhibitors of Mycobacterium tuberculosis: part 2. Synthesis of rigid pyrazolones. Bioorg Med Chem 17:5716–5721

    Article  PubMed  CAS  Google Scholar 

  • Cheng PL, Li HQ, Sun J, Zhou Y, Liang H (2010) Synthesis and biological evaluation of pyrazole derivatives containing thiourea skeleton as anticancer agents. Bioorg Med Chem 18:4606–4614

    Article  Google Scholar 

  • Demirayak S, Kayagil I, Yurttas L, Aslan R (2010) Synthesis of some imidazolyl-thioacetyl-pyrazolinone derivatives and their antinociceptive and anticancer activities. J Enzyme Inhib Med Chem 25:74–79

    Article  PubMed  CAS  Google Scholar 

  • Ebara S, Naito H, Ishii F, Nakamura M (2005) FTR1335 is a novel synthetic inhibitor of Candida albicans N-Myristoyltransferase with fungicidal activity. Biol Pharm Bull 28:591–595

    Article  PubMed  CAS  Google Scholar 

  • El-Din GA, Abuo-Rahma A, Sarhan HA, Gad GFM (2009) Design, synthesis, antibacterial activity and physicochemical parameters of novel N-4-piperazinyl derivatives of Norfloxacin. Bioorg Med Chem 17:3879–3886

    Article  Google Scholar 

  • Extance A (2010) Biologics target bad bugs. Nat Rev Drug discov 9:177–178

    Article  PubMed  CAS  Google Scholar 

  • Franchini C, Muraglia M, Corbo F, Florio MA, Mola AD, Rosato A, Matucci R, Nesi M, Bambeke FV, Vitali C (2009) Synthesis and biological evaluation of 2-mercapto-1,3-benzothiazole derivatives with potential antimicrobial activity. Arch Pharm 342:605–613

    Article  CAS  Google Scholar 

  • Gopalakrishnan M, Thanusu J, Kanagarajan V, Govindaraju R (2009) Design, synthesis and in vitro microbiological evaluation of 6,6-dimethyl-7,9-diaryl-1,2,4,8-tetraazaspiro[4.5]decan-3-thiones—a new series of ‘tailor-made’ compounds. J Enzyme Inhib Med Chem 24:406–412

    Article  PubMed  CAS  Google Scholar 

  • Gouda MA, Berghot MA, Shoeib AI, Khalil AM (2010) Synthesis and antimicrobial of new anthraquinone derivatives incorporating pyrazole moiety. Eur J Med Chem 45:1843–1848

    Article  PubMed  CAS  Google Scholar 

  • Hitchock CA (1993) Resistance of Candida albicans to azole antifungal agents. Biochem Soc Trans 21:1039–1047

    Google Scholar 

  • Jain R, Pandey P (1987) Polarographic investigation on some coupled products of aromatic amines with β-diketones. Bull Electrochem 3:177–180

    CAS  Google Scholar 

  • Kumaraswamy KK, Toleman MA, Walsh TR, Bagaria J et al (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10:597–602

    Article  Google Scholar 

  • Mac Lowry JD, Jaqua MJ, Selepak ST (1970) Detailed methodology and implementation of a semiautomated serial dilution microtechnique for antimicrobial susceptibility testing. Appl Microbiol 20(1970):46–53

    CAS  Google Scholar 

  • Naik PR, Pandeya SN, Pandey A (1996) Anti-inflammatory and analgesic activities of 1-[2-(substituted benzothiazole)]-1,3-diethyl-4-aryl guanidines. Indian J Physiol Pharmacol 40:189–190

    PubMed  CAS  Google Scholar 

  • Ozdemir A, Turan-Zitouni G, Asım Kaplancıklı Z, Revial G, Demirci F, Işcan G (2010) Preparation of some pyrazoline derivatives and evaluation of their antifungal activities. J Enzyme Inhib Med Chem 25:565–571

    Article  PubMed  Google Scholar 

  • Patel NB, Agravat SN (2009) Synthesis and antimicrobial studies of new pyridine derivatives. Chem Heterocycl Compd 45:1343–1353

    Article  CAS  Google Scholar 

  • Patel NB, Khan IH, Rajani SD (2010) Antimycobacterial and antimicrobial study of new 1,2,4-triazoles with benzothiazoles. Arch Pharm Chem Life Sci 10:692–699

    Article  Google Scholar 

  • Ragavan RV, Vijayakumar V, Kumari NS (2010) Synthesis and antimicrobial activities of novel 1,5-diaryl pyrazoles. Eur J Med Chem 45:1173–1180

    Article  PubMed  CAS  Google Scholar 

  • Rana A, Siddiqui N, Khan SA, Haque SE, Bhat MA (2008) N-{[(6-Substituted-1,3-benzothiazole-2-yl)amino]carbonothioyl}-2/4-substituted benzamides: synthesis and pharmacological evaluation. Eur J Med Chem 43:1114–1122

    Article  PubMed  CAS  Google Scholar 

  • Soni B, Ranawat MS, Sharma R, Bhandari A, Sharma S (2010) Synthesis and evaluation of some new benzothiazole derivatives as potential antimicrobial agents. Eur J Med Chem 45:2938–2942

    Article  PubMed  CAS  Google Scholar 

  • Van der Waterbeemed H (1996) Quantative approaches to structure activity relationships. In: Wermuth CG (ed) The practice of medicinal chemistry. Academic Press, London, p 367

    Google Scholar 

  • Verma RS, Khan ZK, Singh AP (1998) Antifungal agents: past, present and future prospects. National Academy of Chemistry and Biology, Lucknow, pp 55–128

    Google Scholar 

Download references

Acknowledgments

The authors wish to express their thanks to University Grant Commission-New Delhi, India for the UGC fellowship and Majeedia Hospital, Hamdard University, New Delhi, India for providing antimicrobial research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd. Amir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amir, M., Javed, S.A. & Zaheen Hassan, M. Synthesis and antimicrobial activity of pyrazolinones and pyrazoles having benzothiazole moiety. Med Chem Res 21, 1261–1270 (2012). https://doi.org/10.1007/s00044-011-9642-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-011-9642-0

Keywords

Navigation