Skip to main content
Log in

Existence of Exponential Orthonormal Bases for Infinite Convolutions on \({{\mathbb {R}}}^n\)

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper we investigate the harmonic analysis of infinite convolutions generated by admissible pairs on Euclidean space \({{\mathbb {R}}}^n\). Our main results give several sufficient conditions so that the infinite convolution \(\mu \) to be a spectral measure, that is, its Hilbert space \(L^2(\mu )\) admits a family of orthonormal basis of exponentials. As a concrete application, we give a complete characterization on the spectral property for certain infinite convolution on the plane \({{\mathbb {R}}}^2\) in terms of admissible pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here, the notation “expanding” denotes that, for the sequence \(\{R_k\}\) with finitely many distinct matrices, there exists \(r > 1\) such that \(\Vert R_kx\Vert _2\ge r\Vert x\Vert _2\) for all k, where \(\Vert \cdot \Vert _2\) denotes the Euclidean 2-norm on \({{\mathbb {R}}}^n\), see [34, pp. 216, line 1–2]

References

  1. An, L.-X., He, X.-G.: A class of spectral Moran measures. J. Funct. Anal. 266, 343–354 (2014)

    Article  MathSciNet  Google Scholar 

  2. An, L.-X., Fu, X.-Y., Lai, C.-K.: On Spectral Cantor-Moran measures and a variant of Bourgain’s sum of sine problem. Adv. Math. 349, 84–124 (2019)

    Article  MathSciNet  Google Scholar 

  3. An, L.-X., He, X.-G., Tao, L.: Spectrality of the planar Sierpinski family. J. Math. Anal. Appl. 432, 725–732 (2015)

    Article  MathSciNet  Google Scholar 

  4. An, L.-X., He, X.-G., Lau, K.-S.: Spectrality of a class of infinite convolutions. Adv. Math. 283, 362–376 (2015)

    Article  MathSciNet  Google Scholar 

  5. Dai, X.-R.: When does a Bernoulli convolution admit a spectrum? Adv. Math. 231, 187–208 (2012)

    Article  MathSciNet  Google Scholar 

  6. Dai, X.-R.: Spectra of Cantor measures. Math. Ann. 366, 1621–1647 (2016)

    Article  MathSciNet  Google Scholar 

  7. Dai, X.-R., Sun, Q.-Y.: Spectral measures with arbitrary Hausdorff dimensions. J. Funct. Anal. 268, 2464–2477 (2015)

    Article  MathSciNet  Google Scholar 

  8. Dai, X.-R., He, X.-G., Lai, C.-K.: Spectral property of Cantor measures with consecutive digits. Adv. Math. 242, 187–208 (2013)

    Article  MathSciNet  Google Scholar 

  9. Deng, Q.-R., Li, M.-T.: Spectrality of Moran-type self-similar measures on \({{\mathbb{R}}}\). J. Math. Anal. Appl. 506, Paper No. 125547 (2022)

  10. Dutkay, D., Hausserman, J., Lai, C.-K.: Hadamard triples generate self-affine spectral measures. Trans. Am. Math. Soc. 371, 1439–1481 (2019)

    Article  MathSciNet  Google Scholar 

  11. Dutkay, D., Han, D.-G., Sun, Q.-Y.: On spectra of a Cantor measure. Adv. Math. 221, 251–276 (2009)

    Article  MathSciNet  Google Scholar 

  12. Dutkay, D., Han, D.-G., Sun, Q.-Y.: Divergence of the Mock and scrambled Fourier series on fractal measures. Trans. Am. Math. Soc. 366, 2191–2208 (2014)

    Article  MathSciNet  Google Scholar 

  13. Dutkay, D., Lai, C.-K.: Spectral measures generated by arbitrary and random convolutions. J. Math. Pures Appl. 107, 183–204 (2017)

    Article  MathSciNet  Google Scholar 

  14. Falconer, K.J.: Fractal Geometry. Mathematical Foundations and Applications. Wiley, New York (1990)

    Google Scholar 

  15. Folland, G.B.: Real Analysis. Modern Techniques and Their Applications. Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. Wiley, New York (1999)

  16. Fuglede, B.: Commuting self-adjoint partial differential operators and a group theoretic problem. J. Funct. Anal. 16, 101–121 (1974)

    Article  MathSciNet  Google Scholar 

  17. Fu, Y.-S., He, L.: Scaling of spectra of a class of random convolution on \({\mathbb{R} }\). J. Funct. Anal. 273, 3002–3026 (2017)

    Article  MathSciNet  Google Scholar 

  18. Fu, Y.-S., He, X.-G., Wen, Z.-X.: Spectra of Bernoulli convolutions and random convolutions. J. Math. Pures Appl. 116, 105–131 (2018)

    Article  MathSciNet  Google Scholar 

  19. Fu, Y.-S., Tang, M.-W.: Spectralicity of homogeneous Moran measures on \({\mathbb{R}}^n\). Forum Math. 35, 201–219 (2023)

    Article  MathSciNet  Google Scholar 

  20. Fu, Y.-S., Tang M.-W., Wen Z.-Y.: Convergence of mock Fourier series on generalized Bernoulli convolutions. Acta Appl. Math. 179, Paper No. 14 (2022)

  21. Hutchinson, J.E.: Fractals and self-similarity. J. Indiana Univ. Math. 30, 713–747 (1981)

    Article  MathSciNet  Google Scholar 

  22. Jorgensen, P., Pedersen, S.: Dense analytic subspaces in fractal \(L^2\) spaces. J. Anal. Math. 75, 185–228 (1998)

    Article  MathSciNet  Google Scholar 

  23. Jessen, B., Wintner, A.: Distribution functions and the Riemann zeta function. Trans. Am. Math. Soc. 38, 48–88 (1935)

    Article  MathSciNet  Google Scholar 

  24. Katznelson, Y.: An Introduction to Harmonic Analysis, Second corrected edn. Dover Publications Inc, New York (1976)

  25. Lev, N., Matolcsi, M.: The Fuglede conjecture for convex domains is true in all dimensions. Acta Math. 228, 385–420 (2022)

    Article  MathSciNet  Google Scholar 

  26. Łaba, I., Wang, Y.: On spectral Cantor measures. J. Funct. Anal. 193, 409–420 (2002)

    Article  MathSciNet  Google Scholar 

  27. Li, J.-L.: Spectra of a class of self-affine measures. J. Funct. Anal. 260, 1086–1095 (2011)

    Article  MathSciNet  Google Scholar 

  28. Li, W.-X., Miao, J.-J., Wang, Z.-Q.: Spectrality of random convolutions generated by finitely many Hadamard triples. Nonlinearity 37, Paper No. 015003 (2024)

  29. Li, W.-X., Miao, J.-J., Wang, Z.-Q.: Weak convergence and spectrality of infinite convolutions. Adv. Math. 404, Paper No. 108425 (2022)

  30. Li, W.-X., Miao, J.-J., Wang, Z.-Q.: Spectrality of infinite convolutions and random convolutions. arXiv preprint arXiv: 2206.07342 (2022)

  31. Li, W.-X., Wang, Z.-Q.: Spectrality of infinite convolutions in \({\mathbb{R}}^d\). arXiv preprint arXiv: 2210.08462 (2022)

  32. Lu, Z.-Y., Dong, X.-H., Zhang P.-F.: Spectrality of some one-dimensional Moran measures. J. Fourier Anal. Appl. 28, Paper No. 63 (2022)

  33. Meyer, C.: Matrix Analysis and Applied Linear Algebra. With 1 CD-ROM (Windows, Macintosh and UNIX) and a Solutions Manual. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2000)

  34. Strichartz, R.: Mock Fourier series and transforms associated with certain Cantor measures. J. Anal. Math. 81, 209–238 (2000)

    Article  MathSciNet  Google Scholar 

  35. Strichartz, R.: Convergence of Mock Fourier series. J. Anal. Math. 99, 333–353 (2006)

    Article  MathSciNet  Google Scholar 

  36. Terence, T.: Fuglede’s conjecture is false in 5 and higher dimensions. Math. Res. Lett. 11, 251–258 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for his/her many valuable comments and suggestions.

Funding

Yan-Song Fu is supported by the National Natural Science Foundation of China (Grant Nos. 12371090, 11801035) and the Fundamental Research Funds for the Central Universities (No. 2023ZKPYLX01). Min-Wei Tang is supported by National Natural Science Foundation of China (Grant No. 12201208) and the Hunan Provincial NSF (Grant Nos. 2023JJ40422, 2024JJ3023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Wei Tang.

Additional information

Communicated by Yurii Lyubarskii.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, YS., Tang, MW. Existence of Exponential Orthonormal Bases for Infinite Convolutions on \({{\mathbb {R}}}^n\). J Fourier Anal Appl 30, 31 (2024). https://doi.org/10.1007/s00041-024-10088-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-024-10088-w

Keywords

Mathematics Subject Classification

Navigation