Skip to main content
Log in

On Symmetric Compactly Supported Wavelets with Vanishing Moments Associated to \(E_d^{(2)}(\mathbb {Z})\) Dilations

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Let A be an expansive linear map on \({{\mathbb {R}}}^d\) preserving the integer lattice and with \(| \det A|=2\). We prove that if there exists a self-affine tile set associated to A, there exists a compactly supported wavelet with any desired number of vanishing moments and some symmetry. We put emphasis on construction of wavelets associated to a linear map A on \({{\mathbb {R}}}^2\) and to the Quincunx dilation on \({{\mathbb {R}}}^3\) because we can remove the hypothesis of the existence of the self-affine tile set. Our construction is based on low pass filters by Han in dimension one with the dyadic dilation and multiresolution theory. Finally, for some particular dilation matrices, we realize that unidimensional Daubechies low pass filers can be adapted to obtain compactly supported wavelets with any desired degree of regularity and any fix number of vanishing moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Antonini, M., Barlaud, M., Mathieu, P., Daubechies, I.: Coding using wavelet transform. IEEE Trans. Image Process. I(2), 205–220 (1992)

    Google Scholar 

  2. Ayache, A.: Construction of non separable dyadic compactly supported orthonormal wavelet bases for \(L^2({\mathbb{R}}^2)\) of arbitrarily high regularity. Rev. Mat. Iberoam. 15(1), 37–58 (1999)

    MATH  Google Scholar 

  3. Ayache, A.: Some methods for constructing nonseparable, orthonormal, compactly supported wavelet bases. Appl. Comput. Harmon. Anal. 10, 99–111 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Bakic, D., Krishtal, I., Wilson, E.N.: Parseval frame wavelets with \(E^{(2)}_n\)-dilations. Appl. Comput. Harmon. Anal. 19(3), 386–431 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Banas, W.: Compactly supported multi-wavelets. Opusc. Math. 32(1), 21–29 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Banas, W.: Some generalized method for constructing nonseparable compactly supported wavelets in \(L^2({\mathbb{R}}^2)\). Opusc. Math. 33(2), 223–235 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Belogay, E., Wang, Y.: Arbitrarily smooth orthogonal non-separable wavelets in \(R^2\). SIAM J. Math. Anal. 30, 678–697 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Belogay, E., Wang, Y.: Compactly supported orthogonal symmetric scaling functions. Appl. Comput. Harmon. Anal. 7(2), 137–150 (1999)

    MathSciNet  MATH  Google Scholar 

  9. Beylkin, G., Coifman, R., Rokhlin, V.: Fast wavelet transforms and numerical algorithms. I. Commun. Pure Appl. Math. 44(2), 141–183 (1991)

    MathSciNet  MATH  Google Scholar 

  10. Bownik, M.: Tight frames of multidimensional wavelets. Dedicated to the memory of Richard J. Duffin. J. Fourier Anal. Appl. 3(5), 525–542 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Bownik, M.: The construction of \(r\)-regular wavelets for arbitrary dilations. J. Fourier Anal. Appl. 7(5), 489–506 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Bownik, M., Speegle, D.: Meyer type wavelet bases in \(\mathbb{R}^2\). J. Approx. Theory 116(1), 49–75 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Cifuentes, P., Kazarian, K.S., San Antolín, A.: Characterization of scaling functions in a multiresolution analysis. Proc. Am. Math. Soc. 133(4), 1013–1023 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Cohen, A.: Ondelettes, analyses multirésolutions et filtres miroirs en quadrature. Ann. Inst. H. Poincaré. Anal. Nonlinéaire 7(5), 439–459 (1990)

    MATH  Google Scholar 

  15. Cohen, A., Daubechies, I.: Non-separable bidimensional wavelet bases. Rev. Mat. Iberoam. 9(1), 51–137 (1993)

    MATH  Google Scholar 

  16. Chui, C.K., Lian, J.-A.: Construction of compactly supported symmetric and antisymmetric orthonormal wavelets with scale =3. Appl. Comput. Harmon. Anal. 2(1), 21–51 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 906–996 (1988)

    MathSciNet  MATH  Google Scholar 

  18. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  19. Daubechies, I., Han, B., Ron, A., Shen, Z.W.: Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14, 1–46 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Folland, G.B.: Real Analysis. Modern Techniques and their Applications. 2nd ed. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts. Wiley, New York, xiv, 386 p. (1999)

  21. Gröchenig, K., Haas, A.: Self-similar lattice tilings. J. Fourier Anal. Appl. 1, 131–170 (1994)

    MathSciNet  MATH  Google Scholar 

  22. Gröchenig, K., Madych, W.R.: Multiresolution analysis, Haar bases and self-similar tillings of \(R^n\). IEEE Trans. Inform. Theory 38(2), 556–568 (1992)

    MathSciNet  MATH  Google Scholar 

  23. Goodman, T.N.T., Micchelli, C.A., Rodriguez, G., Seatzu, S.: Spectral factorization of Laurent polynomials. Adv. Comput. Math. 7, 429–454 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Han, B.: Symmetric orthonormal scaling functions and wavelets with dilation factor 4. Adv. Comput. Math. 8(3), 221–247 (1998)

    MathSciNet  MATH  Google Scholar 

  25. Han, B.: Symmetry property and construction of wavelets with a general dilation matrix. Linear Algebra Appl. 353, 207–225 (2002)

    MathSciNet  MATH  Google Scholar 

  26. Han, B.: Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix. Approximation theory, wavelets and numerical analysis, (Chattanooga, TN, 2001). J. Comput. Appl. Math. 155(1), 43–67 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Han, B.: Computing the smoothness exponent of a symmetric multivariate refinable function. SIAM J. Matrix Anal. Appl. 24(3), 693–714 (2003)

    MathSciNet  MATH  Google Scholar 

  28. Han, B.: Symmetric multivariate orthogonal refinable functions. Appl. Comput. Harmon. Anal. 17(3), 277–292 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Han, B.: Matrix extension with symmetry and applications to symmetric orthonormal complex \(M\)-wavelets. J. Fourier Anal. Appl. 15(5), 684–705 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Han, B.: Symmetric orthonormal complex wavelets with masks of arbitrarily high linear-phase moments and sum rules. Adv. Comput. Math. 32(2), 209–237 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Han, B.: Symmetric orthogonal filters and wavelets with linear-phase moments. J. Comput. Appl. Math. 236(4), 482–503 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Han, B.: Matrix splitting with symmetry and symmetric tight framelet filter banks with two high-pass filters. Appl. Comput. Harmon. Anal. 35(2), 200–227 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Han, B.: Framelets and Wavelets. Algorithms, Analysis, and Applications, Applied and Numerical Harmonic Analysis, vol. xxxiii. Birkhäuser, Cham (2017)

    MATH  Google Scholar 

  34. Hernández, E., Weiss, G.: A First Course on Wavelets. CRC Press Inc., Boca Raton (1996)

    MATH  Google Scholar 

  35. Karakazyan, S., Skopina, M., Tchobanou, M.: Symmetric multivariate wavelets. Int. J. Wavelets Multiresolut. Inf. Process. 7(3), 313–340 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Karoui, A.: A note on the construction of nonseparable wavelet bases and multiwavelet matrix filters of \(L^2({\mathbb{R}}^n)\), Electron. Res. Announc. Am. Math. Soc. 9, 32–39 (2003)

    MathSciNet  MATH  Google Scholar 

  37. Karoui, A.: A note on the design of nonseparable orthonormal wavelet bases of \(L^2({\mathbb{R}}^3)\). Appl. Math. Lett. 18(3), 293–298 (2005)

    MathSciNet  MATH  Google Scholar 

  38. Karoui, A.: A general construction of nonseparable multivariate orthonormal wavelet bases. Cent. Eur. J. Math. 6(4), 504–525 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Kovacevic, J., Vetterli, M.: Nonseparable two- and three-dimensional wavelets. IEEE Trans. Signal Process. 43(5), 1269–1273 (1995)

    Google Scholar 

  40. Krivoshein, A.V.: On construction of multivariate symmetric MRA-based wavelets. Appl. Comput. Harmon. Anal. 36(2), 215–238 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Krivoshein, A.V., Protasov, Y., Skopina, M.: Multivariate Wavelet Frames. Springer, New York (2016)

    MATH  Google Scholar 

  42. Lagarias, J.C., Wang, Y.: Haar type orthonormal wavelet bases in \(\mathbb{R}^2\). J. Fourier Anal. Appl. 2(1), 1–14 (1995)

    MathSciNet  MATH  Google Scholar 

  43. Lai, M.-J.: Construction of multivariate compactly supported orthonormal wavelets. Adv. Comput. Math. 25(1–3), 41–56 (2006)

    MathSciNet  MATH  Google Scholar 

  44. Lan, L., Zhengxing, C., Yongdong, H.: Construction of a class of trivariate nonseparable compactly supported wavelets with special dilation matrix. Bull. Iran. Math. Soc. 38(1), 39–54 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Leng, J., Huang, T., Cattani, C.: Construction of bivariate nonseparable compactly supported orthogonal wavelets. Math. Probl. Eng. (2013). https://doi.org/10.1155/2013/624957

    Article  MathSciNet  MATH  Google Scholar 

  46. Lawton, W.M.: Tight frames of compactly supported affine wavelets. J. Math. Phys. 31(8), 1898–1901 (1990)

    MathSciNet  MATH  Google Scholar 

  47. Maass, P.: Families of orthogonal two-dimensional wavelets. SIAM J. Math. Anal. 27(5), 1454–1481 (1996)

    MathSciNet  MATH  Google Scholar 

  48. Madych, W.R.: Some elementary properties of multiresolution analyses of \(L^2(R^d)\). In: Chui, C. (ed.) Wavelets—A Tutorial in Theory and Applications, pp. 259–294. Academic Press, Cambridge (1992)

    Google Scholar 

  49. Mallat, S.: Multiresolution approximations and wavelet orthonormal bases for \(L^2(R)\). Trans. Am. Math. Soc. 315, 69–87 (1989)

    MATH  Google Scholar 

  50. Meyer, Y.: Ondelettes et Op\(\acute{e}\)rateurs. I. Hermann, Paris (1990) [English Translation: Wavelets and Operators. Cambridge University Press, Cambridge (1992)]

  51. Peng, S.L.: Construction of two-dimensional compactly supported orthogonal wavelets filters with linear phase. Acta Math. Sin. (Engl. Ser.) 18(4), 719–726 (2002)

    MathSciNet  MATH  Google Scholar 

  52. Petukhov, A.: Construction of symmetric orthogonal bases of wavelets and tight wavelet frames with integer dilation factor. Appl. Comput. Harmon. Anal. 17, 198–210 (2004)

    MathSciNet  MATH  Google Scholar 

  53. Strichartz, R.S.: Wavelets and self-affine tilings. Constr. Approx. 9(2–3), 327–346 (1993)

    MathSciNet  MATH  Google Scholar 

  54. Strichartz, R.S.: Construction of orthonormal wavelets. Wavelets: mathematics and applications. Stud. Adv. Math. CRC, Boca Raton, pp. 23–50 (1994)

  55. Walnut, D.F.: An Introduction to Wavelet Analysis. Birkhäuser, Basel, xvii, 449 p. (2002)

  56. Wojtaszczyk, P.: A Mathematical Introduction to Wavelets. London Math. Soc., Student Texts 37 (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel San Antolín.

Additional information

Communicated by Stephan Dahlke.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arenas, M.L., San Antolín, A. On Symmetric Compactly Supported Wavelets with Vanishing Moments Associated to \(E_d^{(2)}(\mathbb {Z})\) Dilations. J Fourier Anal Appl 26, 72 (2020). https://doi.org/10.1007/s00041-020-09782-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-020-09782-2

Keywords

Mathematics Subject Classification

Navigation