Skip to main content
Log in

An Improved Remainder Estimate in the Weyl Formula for the Planar Disk

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Y. Colin de Verdière proved that the remainder term in the two-term Weyl formula for the eigenvalue counting function for the Dirichlet Laplacian associated with the planar disk is no more than \(O(\mu ^{2/3})\). In this paper, we study this problem from spectral geometry by using analysis and number theory. More precisely, by combining with the method of exponential sum estimation, we give a sharper remainder term estimate \(O(\mu ^{2/3-1/495})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Although most results are valid in higher dimensions, we will only present the 2-dimensional version here.

  2. In a recent preprint [4] J. Bourgain and K. Watt obtained an improved bound \(O(\mu ^{517/824+\varepsilon })\) for the Gauss circle problem.

  3. As mentioned in [6], the same result was also announced in 1964 by Kuznecov and Fedosov [18].

  4. The \(\chi \)’s in the splittings that appeared in [6, p. 8] should be \(1-\chi \).

References

  1. Arendt, W., Nittka, R., Peter, W., Steiner, F.: Weyl’s Law: Spectral Properties of the Laplacian in Mathematics and Physic, Mathematical Analysis of Evolution, Information, and Complexity. Wiley, Weinheim (2009)

    MATH  Google Scholar 

  2. Bérard, P.: On the wave equation on a compact Rimeannina manifold without conjugate points. Math. Z. 155, 249–276 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonthonneau, Y.: A lower bound for the \(\Theta \) function on manifolds without conjugate points. Doc. Math. 22, 1275–1283 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Bourgain, J., Watt, N.: Mean square of zeta function, circle problem and divisor problem revisited. ArXiv:1709.04340

  5. Colin de Verdière, Y.: Nombre de points entiers dans une famille homothétique de domains de \({\mathbb{R}}^n\). Ann. Sci. Ecole Norm. Sup. 10, 559–575 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colin de Verdière, Y.: On the remainder in the Weyl formula for the Euclidean disk. Séminaire de théorie spectrale et géométrie 29, 1–13 (2010–2011)

  7. Colin de Verdiére, Y., Guillemin, V., Jerison, D.: Singularities of the wave trace near cluster points of the length spectrum. ArXiv:1101.0099v1

  8. Eswarathasan, S., Polterovich, I., Toth, J.: Smooth billiards with a large Weyl remainder. Int. Math. Res. Not. 12, 3639–3677 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Graham, S.W., Kolesnik, G.: van der Corput’s Method of Exponential Sums. London Mathematical Society Lecture Note Series, vol. 126. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  10. Guillemin, V.: Some classical theorems in spectral theory revisited. In: Seminar on Singularities of Solutions of Linear Partial Differential Equations, Ann. of Math. Stud., vol. 91, pp. 219–259. Princeton Univ. Press, Princeton, NJ (1979)

  11. Guo, J.: Lattice points in large convex planar domains of finite type. Illinois J. Math. 56(3), 731–757 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, J.: Lattice points in rotated convex domains. Rev. Mat. Iberoam 31(2), 411–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hörmander, L.: The Analysis of Linear Partial Differential Operators I, 2nd edn. Springer, Berlin (1983)

    MATH  Google Scholar 

  14. Huxley, M.N.: Area, Lattice Points, and Exponential Sums. The Clarendon Press, Oxford University Press, New York (1996)

    MATH  Google Scholar 

  15. Huxley, M.N.: Exponential sums and lattice points III. Proc. Lond. Math. Soc. 87, 591–609 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ivrii, V.: Second term of the spectral asymptotic expansion of the Laplace-Beltrami operator on manifolds with boundary. Funct. Anal. Appl. 14, 25–34 (1980)

    Article  Google Scholar 

  17. Ivrii, V.: 100 years of Weyl’s law. Bull. Math. Sci. 6, 379–452 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kuznecov, N., Fedosov, B.: An asymptotic formula for the eigenvalues of a circular membrane. Differ. Equ. 1, 1326–1329 (1965)

    MathSciNet  Google Scholar 

  19. Lazutkin, V.F., Terman, D.Ya.: Estimation of the remainder term in the Weyl formula. Funct. Anal. Appl. 15, 299–300 (1982)

    Article  MATH  Google Scholar 

  20. Melrose, R.: Weyl’s conjecture for manifolds with concave boundary. Proc. Symp. Pure Math. 36, 257–274 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Müller, W.: Lattice points in large convex bodies. Monatsh. Math. 128, 315–330 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Müller, W., Nowak, W.G.: On lattice points in planar domains. Math. J. Okayama Univ. 27, 173–184 (1985)

    MathSciNet  MATH  Google Scholar 

  23. Müller, W., Nowak, W.G.: Lattice points in planar domains: applications of Huxley’s “discrete Hardy-Littlewood method”. In: Number-Theoretic Analysis (Vienna, 1988–1989). Lecture Notes in Math, vol. 1452, pp. 139–164. Springer, Berlin (1990)

  24. Olver, F.W.J.: The asymptotic expansion of Bessel functions of large order. Philos. Trans. R. Soc. Lond A 247, 328–368 (1954)

    Article  MathSciNet  Google Scholar 

  25. Sogge, C.D., Stein, E.M.: Averages of functions over hypersurfaces in \(\mathbb{R}^n\). Invent. Math. 82, 543–556 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  26. van der Corput, J.G.: Über Gitterpunkte in der Ebene. Math. Ann. 81, 1–20 (1920)

    Article  MathSciNet  MATH  Google Scholar 

  27. Weyl, H.: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einter Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71, 441–479 (1912)

    Article  MathSciNet  MATH  Google Scholar 

  28. Weyl, H.: Über die Randwertaufgabe der Strahlungstheorie und asymptotische Spektralgeometrie. J. Reine Angew. Math 143, 177–202 (1913)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referee for his insightful comments and suggestions. The authors are partially supported by the NSFC Grant No. 11571331. Jingwei Guo is also partially supported by the NSFC Grant No. 11501535. Zuoqin Wang is also partially supported by the NSFC Grant No. 11721101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuoqin Wang.

Additional information

Communicated by Hans G. Feichtinger.

Appendix A. A Useful Lemma

Appendix A. A Useful Lemma

Here is a quantitative version of the inverse function theorem. It is routine to prove by following the standard argument.

Lemma A.1

Suppose that f is a \(C^{(k)}\) (\(k\geqslant 2\)) mapping from an open set \(\Omega \subset \mathbb {R}^d\) into \(\mathbb {R}^d\) and \(b=f(a)\) for some \(a\in \Omega \). Assume \(|\det (\nabla f(a))|\)\(\geqslant \)c and for any \(x\in \Omega \),

$$\begin{aligned} |D^{\nu } f_i(x)|\leqslant C \quad \quad \text {for }|\nu |\leqslant 2, 1\leqslant i\leqslant d. \end{aligned}$$

If \(r_0\leqslant \sup \{r>0: B(a, r)\subset \Omega \}\) then f is bijective from \(B(a, r_1)\) to an open set containing \(B(b, r_2)\) where

$$\begin{aligned} r_1=\min \left\{ \frac{c}{2d^{2} d! C^d}, r_0\right\} \quad \text {and}\quad r_2=\frac{c}{4d!C^{d-1}}r_1. \end{aligned}$$

The inverse mapping \(f^{-1}\) is also in \(C^{(k)}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Wang, W. & Wang, Z. An Improved Remainder Estimate in the Weyl Formula for the Planar Disk. J Fourier Anal Appl 25, 1553–1579 (2019). https://doi.org/10.1007/s00041-018-9637-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-018-9637-z

Keywords

Mathematics Subject Classification

Navigation