Skip to main content
Log in

Non-harmonic Cones are Heisenberg Uniqueness Pairs for the Fourier Transform on \({\mathbb {R}}^n\)

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this article, we prove that a cone is a Heisenberg uniqueness pair corresponding to sphere as long as the cone does not completely recline on the level surface of any homogeneous harmonic polynomial on \({\mathbb {R}}^n\). We derive that \(\left( S^2, \text { paraboloid}\right) \) and \(\left( S^2, \text { geodesic of } S_r(o)\right) \) are Heisenberg uniqueness pairs for a class of certain symmetric finite Borel measures in \({\mathbb {R}}^3\). Further, we correlate the problem of Heisenberg uniqueness pairs to the sets of injectivity for the spherical mean operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agranovsky, M.L., Narayanan, E.K.: Injectivity of the spherical mean operator on the conical manifolds of spheres. Siberian Math. J. 45(4), 597–605 (2004)

    Article  MathSciNet  Google Scholar 

  2. Agranovsky, M.L., Quinto, E.T.: Injectivity sets for the Radon transform over circles and complete systems of radial functions. J. Funct. Anal. 139(2), 383–414 (1996)

    Article  MathSciNet  Google Scholar 

  3. Agranovsky, M.L., Rawat, R.: Injectivity sets for spherical means on the Heisenberg group. J. Fourier Anal. Appl. 5(4), 363–372 (1999)

    Article  MathSciNet  Google Scholar 

  4. Agranovsky, M.L., Berenstein, C., Kuchment, P.: Approximation by spherical waves in \(L^p\)-spaces. J. Geom. Anal. 6(3), 365–383 (1996)

    Article  MathSciNet  Google Scholar 

  5. Agranovsky, M.L., Volchkov, V.V., Zalcman, L.A.: Conical uniqueness sets for the spherical Radon transform. Bull. Lond. Math. Soc. 31(2), 231–236 (1999)

    Article  MathSciNet  Google Scholar 

  6. Ambartsoumian, G., Kuchment, P.: On the injectivity of the circular Radon transform. Inverse Probl. 21(2), 473–485 (2005)

    Article  MathSciNet  Google Scholar 

  7. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  8. Armitage, D.H.: Cones on which entire harmonic functions can vanish. Proc. R. Irish Acad. Sect. A 92(1), 107–110 (1992)

    MathSciNet  MATH  Google Scholar 

  9. Babot, D.B.: Heisenberg uniqueness pairs in the plane, three parallel lines. Proc. Am. Math. Soc. 141(11), 3899–3904 (2013)

    Article  MathSciNet  Google Scholar 

  10. Bagchi, S.C., Sitaram, A.: Determining sets for measures on \({\mathbb{R}}^n,\) Illinois. J. Math. 26(3), 419–422 (1982)

    MathSciNet  MATH  Google Scholar 

  11. Benedicks, M.: On Fourier transforms of functions supported on sets of finite Lebesgue measure. J. Math. Anal. Appl. 106(1), 180–183 (1985)

    Article  MathSciNet  Google Scholar 

  12. Giri, D.K., Srivastava, R.K.: Heisenberg uniqueness pairs for some algebraic curves in the plane. Adv. Math. 310, 993–1016 (2017)

    Article  MathSciNet  Google Scholar 

  13. Gröchenig, K., Jaming, P.: The Cramér-Wold theorem on quadratic surfaces and Heisenberg uniqueness pairs. arXiv:1608.06738

  14. Hedenmalm, H., Montes-Rodríguez, A.: Heisenberg uniqueness pairs and the Klein-Gordon equation. Ann. Math. (2) 173(3), 1507–1527 (2011)

    Article  MathSciNet  Google Scholar 

  15. Jaming, P., Kellay, K.: A dynamical system approach to Heisenberg uniqueness pairs. arXiv:1312.6236 (2014)

  16. Lev, N.: Uniqueness theorem for Fourier transform. Bull. Sci. Math. 135, 134–140 (2011)

    Article  MathSciNet  Google Scholar 

  17. Narayanan, E.K., Ratnakumar, P.K.: Benedick’s theorem for the Heisenberg group. Proc. Am. Math. Soc. 138(6), 2135–2140 (2010)

    Article  MathSciNet  Google Scholar 

  18. Narayanan, E.K., Thangavelu, S.: Injectivity sets for spherical means on the Heisenberg group. J. Math. Anal. Appl. 263(2), 565–579 (2001)

    Article  MathSciNet  Google Scholar 

  19. Narayanan, E.K., Rawat, R., Ray, S.K.: Approximation by \(K\)-finite functions in \(L^p\) spaces. Israel J. Math. 161, 187–207 (2007)

    Article  MathSciNet  Google Scholar 

  20. Pati, V., Sitaram, A.: Some questions on integral geometry on Riemannian manifolds, Ergodic theory and harmonic analysis (Mumbai, 1999). Sankhya Ser. A 62(3), 419–424 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Price, F.J., Sitaram, A.: Functions and their Fourier transforms with supports of finite measure for certain locally compact groups. J. Funct. Anal. 79(1), 166–182 (1988)

    Article  MathSciNet  Google Scholar 

  22. Sitaram, A., Sundari, M., Thangavelu, S.: Uncertainty principles on certain Lie groups. Proc. Indian Acad. Sci. Math. Sci. 105(2), 135–151 (1995)

    Article  MathSciNet  Google Scholar 

  23. Sjölin, P.: Heisenberg uniqueness pairs and a theorem of Beurling and Malliavin. Bull. Sci. Math. 135, 125–133 (2011)

    Article  MathSciNet  Google Scholar 

  24. Sjölin, P.: Heisenberg uniqueness pairs for the parabola. J. Four. Anal. Appl. 19, 410–416 (2013)

    Article  MathSciNet  Google Scholar 

  25. Sogge, C.D.: Oscillatory integrals and spherical harmonics. Duke Math. J. 53, 43–65 (1986)

    Article  MathSciNet  Google Scholar 

  26. Srivastava, R.K.: Sets of injectivity for weighted twisted spherical means and support theorems. J. Fourier Anal. Appl. 18(3), 592–608 (2012)

    Article  MathSciNet  Google Scholar 

  27. Srivastava, R.K.: Coxeter system of lines and planes are sets of injectivity for the twisted spherical means. J. Funct. Anal. 267, 352–383 (2014)

    Article  MathSciNet  Google Scholar 

  28. Srivastava, R.K.: Real analytic expansion of spectral projection and extension of Hecke–Bochner identity. Israel J. Math. 200, 1–22 (2014)

    Article  MathSciNet  Google Scholar 

  29. Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32. Princeton University Press, Princeton (1971)

  30. Sugiura, M.: Unitary representations and harmonic analysis, North-Holland Mathematical Library, 44. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo (1990)

  31. Thangavelu, S.: An introduction to the uncertainty principle, Prog. Math. 217. Birkhauser, Boston (2004)

  32. Vieli, F.J.G.: A uniqueness result for the Fourier transform of measures on the sphere. Bull. Aust. Math. Soc. 86, 78–82 (2012)

    Article  MathSciNet  Google Scholar 

  33. Vieli, F.J.G.: A uniqueness result for the Fourier transform of measures on the paraboloid. Matematicki Vesnik 67(1), 52–55 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author wishes to thank E. K. Narayanan and Rama Rawat for several fruitful discussions. The author would also like to gratefully acknowledge the support provided by IIT Guwahati, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Srivastava.

Additional information

Communicated by Alex Iosevich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, R.K. Non-harmonic Cones are Heisenberg Uniqueness Pairs for the Fourier Transform on \({\mathbb {R}}^n\). J Fourier Anal Appl 24, 1425–1437 (2018). https://doi.org/10.1007/s00041-018-9601-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-018-9601-y

Keywords

Mathematics Subject Classification

Navigation