Skip to main content
Log in

A New Perspective on the Two-Dimensional Fractional Fourier Transform and Its Relationship with the Wigner Distribution

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

The fractional Fourier transform \(F_{\theta }(w)\) with an angle \(\theta \) of a function f(t) is a generalization of the standard Fourier transform and reduces to it when \(\theta =\pi /2. \) It has many applications in signal processing and optics because of its close relations with a number of time-frequency representations. It is known that the Wigner distribution of the fractional Fourier transform \(F_{\theta }(w)\) may be obtained from the Wigner distribution of f by a two-dimensional rotation with the angle \(\theta \) in the \(t-w\) plane The fractional Fourier transform has been extended to higher dimensions by taking the tensor product of one-dimensional transforms; hence, resulting in a transform in several but separable variables. It has been shown that the Wigner distribution of the two-dimensional fractional Fourier transform \(F_{\theta ,\phi }(v,w)\) may be obtained from the Wigner distribution of f(xy) by a simple four-dimensional rotation with the angle \(\theta \) in the \(x-y\) plane and the angle \(\phi \) in the \(v-w\) plane. The aim of this paper is two-fold: (1) To introduce a new definition of the two-dimensional fractional Fourier transform that is not a tensor product of two copies of one-dimensional transforms. The new transform, which is more general than the one that exists in the literature, uses a relatively new family of Hermite functions, known as Hermite functions of two complex variables. (2) To give an explicit matrix representation of a four-dimensional rotation that verifies that the Wigner distribution of the new two-dimensional fractional Fourier transform \(F_{\theta ,\phi }(v,w)\) may be obtained from the Wigner distribution of f(xy) by a four-dimensional rotation. The matrix representation is more general than the one for the tensor product case and it corresponds to a four-dimensional rotation with two planes of rotations, one with the angle \((\theta +\phi )/2\) and the other with the angle \((\theta -\phi )/2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida, L.B.: The fractional Fourier transform and time- frequency representations. IEEE Trans. Signal Process. 42(11), 3084–3091 (1994)

    Article  Google Scholar 

  2. Alieva, T., Bastiaans, M.: Wigner-distribution and fractional Fourier transform for two-dimensional symmetric optical beams. J. Opt. Soc. Am. A 17(12), 2319–2323 (2000)

    Article  MathSciNet  Google Scholar 

  3. Bastiaans, M.J., van Leest, A.J.: From the rectangular to the quincunx Gabor lattice via fractional Fourier transformation. IEEE Signal Process. Lett. 5, 203–205 (1998)

    Article  Google Scholar 

  4. Boashash, B. (ed.): Time-Frequency Signal Analysis-Method and Applications. Halsted Press, New-York (1992)

    Google Scholar 

  5. Candan, C., Kutay, M.A., Ozakdas, H.M.: The discrete fractional Fourier transform. IEEE Trans. Signal Proc. 48(5), 1329–1337 (2000)

    Article  MathSciNet  Google Scholar 

  6. Cariolaro, G., Erseghe, T., Kraniauskas, P., Laurenti, N.: Multiplicity of fractional Fourier transforms and their relationships. IEEE Trans. Signal Process. 48(1), 227–241 (2000)

    Article  MathSciNet  Google Scholar 

  7. Claasen, T.A.C.M., Mecklenbräuker, W.F.G.: The Wigner distribution—a tool for time-frequency signal analysis. II: discrete-time signals, part 2. Philips J. Res. 35, 276–300 (1980)

    MathSciNet  MATH  Google Scholar 

  8. Cohen, L.: Time-Frequency Analysis. Prentice Hall, Endlewood Cliffes (1995)

    Google Scholar 

  9. de Bruijn, N.G.: A theory of generalized functions with applications to Wigner distribution and Weyl correspondence. Nieuw Arch. Wisk. 21, 205–280 (1973)

    MathSciNet  MATH  Google Scholar 

  10. De Gosson, M.: The Wigner Transform. Advanced Textbooks in Mathematics. World Scientific Publishing Co Pte. Ltd., Hackensack (2017)

    Book  Google Scholar 

  11. De Gosson, M., Luef, F.: Metaplectic group, symplectic Cayley transform and fractional Fourier transfoms. J. Math. Anal. Appl. 416, 947–968 (2014)

    Article  MathSciNet  Google Scholar 

  12. Erdogdu, M., Ozdemir, M.: Generating four dimensional rotation matrices (2015). https://www.researchgate.net/publication/283007638

  13. Erseghe, T., Kraniauskas, P., Carioraro, G.: Unified fractional Fourier transform and sampling theorem. IEEE Trans. Signal Proc. 47(12), 3419–3423 (1999)

    Article  Google Scholar 

  14. Folland, G.: Harmonic Analysis in Phase Space. Annals of Mathematics Studies, vol. 122. Princeton University Press, Princeton (1989)

    Book  Google Scholar 

  15. Gröchenig, K.: Foundations of Time-Frequency Analysis. Appl. Numer. Harmon. Anal. Birkhäuser, Boston, MA (2001)

    Book  Google Scholar 

  16. Hlawatsch, F., Boudreaux-Bartels, G.F.: Linear and quadratic time-frequency signal representations. IEEE Signal Process. Mag. 9(2), 21–67 (1992)

    Article  Google Scholar 

  17. Ismail, M.: Analytic properties of complex Hermite polynomials. Trans. Am. Math. Soc. 368(2), 1189–1210 (2016)

    Article  MathSciNet  Google Scholar 

  18. Kerr, F.H.: A fractional power theory for Hankel transforms in \(L2(R+)\). J. Math. Anal. Appl. 158, 114–123 (1991)

    Google Scholar 

  19. Kerr, F.H.: Fractional powers of Hankel transforms in the Zemanian spaces. J. Math. Anal. Appl. 166, 65–83 (1992)

    Article  MathSciNet  Google Scholar 

  20. Kutay, M.A., Ozaktas, H.M., Arikan, O., Onural, L.: Optimal filtering in fractional Fourier domains. IEEE Trans. Signal Proc. 45, 1129–1143 (1997)

    Article  Google Scholar 

  21. Lohmann, A.W.: Image rotation, Wigner rotation and the fractional Fourier transform. J. Opt. Soc. Am. A 10, 2181–2186 (1993)

    Article  Google Scholar 

  22. McBride, A., Kerr, F.: On Namias’s fractional Fourier transforms. IMA J. Appl. Math. 39, 159–175 (1987)

    Article  MathSciNet  Google Scholar 

  23. Mebius, J.E.: Derivation of the Euler-Rodrigues formula for three-dimensional rotations from the general formula for four-dimensional rotations, arXiv: math/0701759v1 [math.GM] 26 Jan 2007

  24. Mendlovich, D., Ozaktas, H.M.: Fractional Fourier transforms and their optical implementation 1. J. Opt. Soc. Am. A. 10, 1875–1881 (1993)

    Article  Google Scholar 

  25. Mendlovic, D., Ozaktas, H.M., Lohmann, A.: Graded-index fibers, Wigner-distribution functions, and the fractional Fourier transform. J. Appl. Opt. 33(26), 6188–6193 (1994)

    Article  Google Scholar 

  26. Mendlovic, D., Zalevsky, Z., Ozakdas, H.M.: The applications of the fractional Fourier transform to optical pattern recognition. In: Optical Pattern Recognition, Ch. 3. Academic, New York (1998)

  27. Mustard, D.: The fractional Fourier transform and the Wigner distribution. J. Austral. Math. Soc. B 38, 209–219 (1996)

    Article  MathSciNet  Google Scholar 

  28. Namias, V.: Fractionalization of Hankel transform. J. Instit. Math. Appl. 26, 187–197 (1980)

    Article  MathSciNet  Google Scholar 

  29. Namias, V.: The fractional order Fourier transforms and its application to quantum mechanics. J. Inst. Math. Appl. 25, 241–265 (1980)

    Article  MathSciNet  Google Scholar 

  30. Ozaktas, H.M., Barshan, B., Mendlovic, D., Onural, L.: Convolution filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms. J. Opt. Soc. Am. A. 11, 547–559 (1994)

    Article  MathSciNet  Google Scholar 

  31. Ozaktas, H.M., Kutay, M.A., Mendlovic, D.: Introduction to the fractional Fourier transform and its applications. In: Advances in Imaging Electronics and Physics, Ch. 4. Academic, New York (1999)

  32. Ozaktas, H., Zalevsky, Z., Kutay, M.: The Fractional Fourier Transform with Applications in Optics and Signal Processing. Wiley, New York (2001)

    Google Scholar 

  33. Pei, S.-C., Yeh, M.-H., Luo, T.-L.: Fractional Fourier series expansion for finite signal and dual extension to discrete-time fractional Fourier transform. IEEE Trans. Signal Proc. 47(10), 2883–2888 (1999)

    Article  MathSciNet  Google Scholar 

  34. Prasad, A., Manna, S., Mahato, A., Singh, V.K.: The generalized continuous wavelet transform associated with the fractional Fourier transform. J. Comput. Appl. Math. 259, 660–671 (2014)

    Article  MathSciNet  Google Scholar 

  35. Shakhmurov, V.B., Zayed, A.I.: Fractional Wigner distribution and ambiguity functions. J. Frac. Calc. Appl. Anal. 6(4), 473–490 (2003)

    MathSciNet  MATH  Google Scholar 

  36. Shi, J., Zhang, N.T., Liu, X.P.: A novel fractional wavelet transform and its applications. Sci. China Inf. Sci. 55(6), 1270–1279 (2012)

    Article  MathSciNet  Google Scholar 

  37. Simon, R., Wolf, K.B.: Fractional Fourier transforms in two dimensions. J. Opt. Soc. Am. 17(12), 2368–2381 (2000)

    Article  MathSciNet  Google Scholar 

  38. Weiner, J.L., Wilkens, G.R.: Quaternions and rotations in \(\mathbb{E}^4,\). Am. Math. Mon. 112, 69–76 (2005)

    Google Scholar 

  39. Wiener, N.: Hermitian polynomials and Foureir analysis. J. Math. Phys. MIT 8, 70–73 (1929)

    Article  Google Scholar 

  40. Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  Google Scholar 

  41. Wolf, K.B.: Integral Transforms in Science and Engineering. Plenum Press, New York (1979)

    Book  Google Scholar 

  42. Zalevsky, Z., Mendlovic, D.: Fractional Wiener filter. Appl. Opt. 35, 3930–3936 (1996)

    Article  Google Scholar 

  43. Zayed, A.I.: On the relationship between the Fourier and fractional Fourier transforms. IEEE Signal Process. Lett. 3, 310–311 (1996)

    Article  Google Scholar 

  44. Zayed, A.I.: Convolution and product theorem for the fractional Fourier transform. IEEE Signal Process. Lett. 4, 15–17 (1997)

    Article  Google Scholar 

  45. Zayed, A.I.: Fractional Fourier transform of generalized functions. J. Int. Transf. Spec. Funct. 7(4), 299–312 (1998)

    Article  MathSciNet  Google Scholar 

  46. Zayed, A.I.: A class of fractional integral transforms: a generalization of the fractional Fourier transform. IEEE Trans. Signal Process. 50, 619–627 (2002)

    Article  MathSciNet  Google Scholar 

  47. Zhang, Y., Funaba, T., Tanno, N.: Self-fractional Hankel functions and their properties. Opt. Commun. 176, 71–75 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Zayed.

Additional information

Communicated by Hans G. Feichtinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zayed, A. A New Perspective on the Two-Dimensional Fractional Fourier Transform and Its Relationship with the Wigner Distribution . J Fourier Anal Appl 25, 460–487 (2019). https://doi.org/10.1007/s00041-017-9588-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-017-9588-9

Keywords

Mathematics Subject Classification

Navigation