Skip to main content
Log in

p-Adic Analogue of the Porous Medium Equation

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We consider a nonlinear evolution equation for complex-valued functions of a real positive time variable and a p-adic spatial variable. This equation is a non-Archimedean counterpart of the fractional porous medium equation. Developing, as a tool, an \(L^1\)-theory of Vladimirov’s p-adic fractional differentiation operator, we prove m-accretivity of the appropriate nonlinear operator, thus obtaining the existence and uniqueness of a mild solution. We give also an example of an explicit solution of the p-adic porous medium equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Khrennikov, A.Y., Shelkovich, V.M.: Theory of p-Adic Distributions. Linear and Nonlinear Models. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  2. Albeverio, S., Khrennikov, A.Y., Shelkovich, V.M.: The Cauchy problem for evolutionary pseudo-differential equations and the wavelet theory. J. Math. Anal. Appl. 375, 82–98 (2011)

    Article  MathSciNet  Google Scholar 

  3. Aronson, D.G.: The porous medium equation. Lect. Notes Math. 1224, 1–46 (2006)

    MathSciNet  Google Scholar 

  4. Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, New York (2010)

    Book  Google Scholar 

  5. Bénilan, P., Brézis, H., Crandall, M.: A semilinear equation in \(L^1({\mathbb{R}}^n)\). Ann. Scuola Norm. Super. Pisa Cl. Sci. 2(4), 523–555 (1975)

    MATH  Google Scholar 

  6. Brézis, H., Strauss, W.: Semilinear elliptic equations in \(L^1\). J. Math. Soc. Jpn. 25, 15–26 (1973)

    Article  Google Scholar 

  7. Clément, P., et al.: One-Parameter Semigroups. North-Holland, Amsterdam (1987)

    MATH  Google Scholar 

  8. Crandall, M., Pierre, M.: Regularizing effects for \(u_t+A\psi (u)=0\) in \(L^1\). J. Funct. Anal. 45, 194–212 (1982)

    Article  MathSciNet  Google Scholar 

  9. de Pablo, A., Quiros, F., Rodríguez, A., Vázquez, J.L.: A general fractional porous medium equation. Comm. Pure Appl. Math. 65, 1242–1284 (2012)

    Article  MathSciNet  Google Scholar 

  10. Edwards, R.E.: Functional Analysis. Theory and Applications. Holt, Rinehart and Winston, New York (1965)

    MATH  Google Scholar 

  11. Federer, H.: Geometric Measure Theory. Springer, Berlin (1969)

    MATH  Google Scholar 

  12. Feichtinger, H.G.: Elements of postmodern harmonic analysis. In: Gröchenig, K., Lyubarskii, Y., Seip, K. (eds.) Operator-Related Function Theory and Time-Frequency Analysis, pp. 77–105. Springer, New York (2015)

    Google Scholar 

  13. Guidetti, D.: On elliptic systems in \(L^1\). Osaka J. Math. 30, 397–429 (1993)

    MathSciNet  MATH  Google Scholar 

  14. Haran, S.: Quantization and symbolic calculus over the \(p\)-adic numbers. Ann. Inst. Fourier 43, 997–1053 (1993)

    Article  MathSciNet  Google Scholar 

  15. Kaneko, H.: Besov space and trace theorem on a local field and its application. Math. Nachr. 285, 981–996 (2012)

    Article  MathSciNet  Google Scholar 

  16. Khrennikov, A., Oleschko, K., Correa, M.J.: Lopez, application of p-adic wavelets to model reaction-diffusion dynamics in random porous media. J. Fourier Anal. Appl. 22, 809–822 (2016)

    Article  MathSciNet  Google Scholar 

  17. Khrennikov, A., Oleschko, K., Correa Lopez, M.J.: Modeling fluid’s dynamics with master equations in ultrametric spaces representing the treelike structure of capillary networks. Entropy 18(249), 28 (2016)

    MathSciNet  Google Scholar 

  18. Khrennikov, A.Y., Shelkovich, V.M.: Non-Haar \(p\)-adic wavelets and their application to pseudo-differential operators and equations. Appl. Comp. Harmonic Anal. 28, 1–23 (2010)

    Article  MathSciNet  Google Scholar 

  19. Kochubei, A.N.: Pseudo-Differential Equations and Stochastics over Non-Archimedean Fields. Marcel Dekker, New York (2001)

    Book  Google Scholar 

  20. Kochubei, A.N.: A non-Archimedean wave equation. Pac. J. Math. 235, 245–261 (2008)

    Article  MathSciNet  Google Scholar 

  21. Rodriguez-Vega, J.J., Zúñiga-Galindo, W.A.: Elliptic pseudo-differential equations and Sobolev spaces over p-adic fields. Pac. J. Math. 246, 407–420 (2010)

    Article  Google Scholar 

  22. Taibleson, M.H.: Fourier Analysis on Local Fields. Princeton University Press, Princeton (1975)

    MATH  Google Scholar 

  23. Vázquez, J.L.: The Porous Medium Equation. Mathematical Theory. Clarendon Press, Oxford (2007)

    MATH  Google Scholar 

  24. Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: \(p\) -Adic Analysis and Mathematical Physics. World Scientific, Singapore (1994)

    Book  Google Scholar 

  25. Vladimirov, V.S.: Tables of Integrals of Complex-Valued Functions of p-Adic Arguments. Steklov Mathematical Institute, Moscow (2003)

    MATH  Google Scholar 

  26. Zúñiga-Galindo, W.A.: Fundamental solutions of pseudo-differential operators over p-adic fields. Rend. Sem. Mat. Univ. Padova 109, 241–245 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Zúñiga-Galindo, W.A.: Parabolic equations and Markov processes over p-adic fields. Potential Anal. 28, 185–200 (2008)

    Article  MathSciNet  Google Scholar 

  28. Zúñiga-Galindo, W.A.: The Cauchy problem for non-Archimedean pseudo-differential equations of Klein-Gordon type. J. Math. Anal. Appl. 420, 1033–1050 (2014)

    Article  MathSciNet  Google Scholar 

  29. Zúñiga-Galindo, W.A.: Non-Archimedean reaction-ultradiffusion equations and complex hierarchic systems (2016). arXiv:1604.06471

Download references

Acknowledgements

The second author is grateful to Mathematical Institute, Linnaeus University, for hospitality during his visits to Växjö. The work of the second author was also supported in part by Grant 23/16-18 “Statistical dynamics, generalized Fokker-Planck equations, and their applications in the theory of complex systems” of the Ministry of Education and Science of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly N. Kochubei.

Additional information

Communicated by Hans G. Feichtinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khrennikov, A.Y., Kochubei, A.N. p-Adic Analogue of the Porous Medium Equation. J Fourier Anal Appl 24, 1401–1424 (2018). https://doi.org/10.1007/s00041-017-9556-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-017-9556-4

Keywords

Mathematics Subject Classification

Navigation