Skip to main content
Log in

An Approach to Wavelet Isomorphisms of Function Spaces Via Atomic Representations

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Both wavelet and atomic decomposition techniques are essential tools in the study of function spaces nowadays, but they both have their advantages and disadvantages. The celebrated bridge between both concepts was given by the compactly supported Daubechies wavelets which can be interpreted as atoms. In this paper we deal with the converse direction, that is, we present a fairly general approach how to construct compactly supported wavelets when an atomic decomposition is known already. The main idea is Taylor’s expansion combined with our new, so-called \(\varkappa \)-convergence assumption in the admitted sequence spaces. We finally exemplify our main result and collect some known and new settings where such a wavelet decomposition is obtained, e.g., in spaces of Besov or Triebel–Lizorkin type with a doubling weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bownik, M.: Atomic and molecular decompositions of anisotropic Besov spaces. Math. Z. 250(3), 539–571 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bownik, M.: Anisotropic Triebel–Lizorkin spaces with doubling measures. J. Geom. Anal. 17(3), 387–424 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bui, H.Q.: Weighted Hardy spaces. Math. Nachr. 103, 45–62 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41(7), 909–996 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Daubechies, I.: Ten lectures on wavelets, volume 61 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992)

  6. Fefferman, C., Stein, E.M.: Some maximal inequalities. Am. J. Math. 93, 107–115 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  7. Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34(4), 777–799 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frazier, M., Jawerth, B.: A discrete transform and decomposition of distribution spaces. J. Funct. Anal. 93(1), 34–170 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. García-Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies, vol. 116. North-Holland, Amsterdam (1985)

    Book  MATH  Google Scholar 

  10. Haroske, D.D., Piotrowska, I.: Atomic decompositions of function spaces with Muckenhoupt weights, and some relation to fractal analysis. Math. Nachr. 281(10), 1476–1494 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haroske, D.D., Skandera, P.: Embeddings of doubling weighted Besov spaces. In: Function Spaces X. Banach Center Publications, pp. 105–119. Polish Academy of Sciences, Warsaw (2014)

  12. Haroske, D.D., Skrzypczak, L.: Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights, I. Rev. Mat. Complut. 21(1), 135–177 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haroske, D.D., Triebel, H.: Wavelet bases and entropy numbers in weighted function spaces. Math. Nachr. 278(1–2), 108–132 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kabanava, M.: Tempered Radon measures. Rev. Mat. Complut. 21(2), 553–564 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kyriazis, G.: Decomposition systems for function spaces. Studia Math. 157(2), 133–169 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mallat, S.: Multiresolution approximations and wavelet orthonormal bases of \(L^2\)( R). Trans. Am. Math. Soc. 315(1), 69–87 (1989)

    MathSciNet  MATH  Google Scholar 

  17. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  18. Meyer, Y.: Wavelets and Operators. Cambridge Studies in Advanced Mathematics, vol. 37. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  19. Muckenhoupt, B.: Hardy’s inequality with weights. Studia Math. 44, 31–38 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  20. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. Muckenhoupt, B.: The equivalence of two conditions for weight functions. Studia Math. 49, 101–106 (1973/1974)

  22. Rychkov, V.S.: On a theorem of Bui, Paluszynski, and Taibleson. Tr. Mat. Inst. Steklova, 227, 286–298 (1999) (Russian); Engl. Transl. Proc. Steklov Inst. Math. 227, 280–292 (1999)

  23. Skandera, P.: Decompositions in doubling weighted Besov–Triebel–Lizorkin spaces and applications. PhD thesis, Friedrich Schiller University Jena, Germany (2016)

  24. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  25. Strömberg, J.-O., Torchinsky, A.: Weighted Hardy Spaces. Lecture Notes in Mathematics, vol. 1381. Springer, Berlin (1989)

    MATH  Google Scholar 

  26. Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. Pure and Applied Mathematics, vol. 123. Academic Press, Orlando (1986)

    MATH  Google Scholar 

  27. Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)

    Book  MATH  Google Scholar 

  28. Triebel, H.: Theory of Function Spaces II. Birkhäuser, Basel (1992)

    Book  MATH  Google Scholar 

  29. Triebel, H.: Fractals and Spectra. Birkhäuser, Basel (1997)

    Book  MATH  Google Scholar 

  30. Triebel, H.: The Structure of Functions. Birkhäuser, Basel (2001)

    Book  MATH  Google Scholar 

  31. Triebel, H.: A note on wavelet bases in function spaces. In: Orlicz Centenary Volume, Volume 64 of Banach Center Publication, pp. 193–206. Institute of Mathematics, Polish Academy of Sciences, Warszawa (2004)

  32. Triebel, H.: Theory of Function Spaces III. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  33. Triebel, H.: Function Spaces and Wavelets on Domains. EMS Tracts in Mathematics (ETM). European Mathematical Society (EMS), Zürich (2008)

    Book  MATH  Google Scholar 

  34. Triebel, H.: Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration. EMS Tracts in Mathematics (ETM). European Mathematical Society (EMS), Zürich (2010)

    Book  MATH  Google Scholar 

  35. Wojciechowska, A.: Local means and wavelets in function spaces with local Muckenhoupt weights. In: Function Spaces IX, Volume 92 of Banach Center Publication, pp. 399–412. Institute of Mathematics, Polish Academy of Sciences, Warsaw (2011)

  36. Wojciechowska, A.: Multidimentional wavelet bases in weighted Besov and Triebel–Lizorkin spaces. PhD thesis, Adam-Mickiewicz-University Poznań, Poland (2012)

  37. Wojciechowska, A.: A remark on wavelet bases in weighted \(L_p\) spaces. J. Funct. Spaces Appl., Art. ID 328310 (2012)

  38. Wojtaszczyk, P.: A Mathematical Introduction to Wavelets. London Mathematical Society Student Texts No. 37. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  39. Yosida, K.: Functional Analysis. Grundlehren der Mathematischen Wissenschaften, vol. 123, 6th edn. Springer, Berlin (1980)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their careful reading and many helpful comments, which improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothee D. Haroske.

Additional information

Communicated by Stephan Dahlke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haroske, D.D., Skandera, P. & Triebel, H. An Approach to Wavelet Isomorphisms of Function Spaces Via Atomic Representations. J Fourier Anal Appl 24, 830–871 (2018). https://doi.org/10.1007/s00041-017-9538-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-017-9538-6

Keywords

Mathematics Subject Classification

Navigation