Skip to main content
Log in

On Weyl’s Asymptotics and Remainder Term for the Orthogonal and Unitary Groups

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We examine the asymptotics of the spectral counting function of a compact Riemannian manifold by Avakumovic (Math Z 65:327–344, [1]) and Hörmander (Acta Math 121:193–218, [15]) and show that for the scale of orthogonal and unitary groups \(\mathbf{SO}(N)\), \(\mathbf{SU}(N)\), \(\mathbf{U}(N)\) and \(\mathbf{Spin}(N)\) it is not sharp. While for negative sectional curvature improvements are possible and known, cf. e.g., Duistermaat and Guillemin (Invent Math 29:39–79, [7]), here, we give sharp and contrasting examples in the positive Ricci curvature case [non-negative for \(\mathbf{U}(N)\)]. Furthermore here the improvements are sharp and quantitative relating to the dimension and rank of the group. We discuss the implications of these results on the closely related problem of closed geodesics and the length spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the sequel when the choice of \(M^d\) is clear from the context, or when there is no danger of confusion, we suppress the dependence on \(M^d\) and simply write \(\mathscr {N}=\mathscr {N}(\lambda )\).

  2. For further improvements of this classical result of Hlawka [14] and more on the lattice point problem see Chamizo and Iwaniec [5], Heath-Brown [12], Huxley [18], Walfisz [34] as well as Fricker [10]. See also Sect. 2.

  3. The reader is referred to the monographs [4, 13] and [20, 38] for further details and the jargon on Lie groups and their representations.

  4. In fact the Liouville measure of the set of periodic orbits of the geodesics flow in the co-tangent bundle \(T^\star \mathbf{SO}(N)\) is zero for \(N \ge 4\) (see [24] for more).

  5. Therefore in the \(\mathbf {SO}(2n+1)\) case, in contrast to \(\mathbf {SO}(2n)\), we have \(b_n\in {\mathbb N}_0\).

  6. This is a consequence of the identities \(\widehat{f(\cdot +h)}(\xi ) = \widehat{f}(\xi ) e^{2\pi i h \cdot \xi }\), \(|\widehat{f(\cdot +h)}(\xi )| = |\widehat{f}(\xi )|\).

  7. Below we shall be using the notation of \(\mathscr {A}_\rho = \mathscr {A} + \rho \).

  8. It can be easily checked that the Weyl group W maps \(\mathscr {A}_{\rho }\) to itself since for each \(w \in W\) we have that \(w\cdot \rho = \rho - \alpha \) for some \(\alpha \in \mathfrak {R}\subset \mathscr {A}\). Then as \(W \cdot \mathscr {A} = \mathscr {A}\) we clearly have that for any \(w\in W\), \(w\cdot (\mu + \rho ) \in \mathscr {A}_{\rho }\).

  9. For more on approximation results of this nature the reader is referred to ([9] pp. 187–192).

  10. In [10] the identity (69) is proved when \(m=0\). However the case \(m>0\) is similar modulo suitable adjustments to essentially account for \(m \ne 0\). Therefore to avoid repetition with an existing text we shall simply refer the reader to [10] when necessary.

  11. The remainder term here accounts for \(j=0\) which is \(t^{m+1}D(t) = O(t^{m+1}\ln t)\) since \(D(t)=O(\ln t)\), however, in what follows we show that \(H(t),L(t)=O(t^{m+3/2})\) and therefore we can omit this additional remainder as it will be adsorbed into this asymptotics.

References

  1. Avakumovic, V.G.: Uber die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten. Math. Z. 65, 327–344 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  2. Awonusika, R.O., Taheri, A.: Spectral Invariants on Compact Symmetric Spaces: From Heat Trace to Functional Determinants (submitted for publication, 2017)

  3. Berard, P.: On the wave equation on a compact Riemannian manifold without conjugate points. Math. Z. 155, 249–276 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bröckner, T., Dieck, T.T.: Representations of Compact Lie Groups. Graduate Texts in Mathematics. Springer, New York (1985)

    Book  Google Scholar 

  5. Chamizo, F., Iwaniec, H.: On the sphere problem. Rev. Mat. Iber. 11, 417–429 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chazarain, J.: Formule de Poisson pour les varietes riemanniennes. Invent. Math. 24, 65–82 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  7. Duistermaat, J.J., Guillemin, V.W.: The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math. 29, 39–79 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duistermaat, J.J., Hörmander, L.: Fourier Integral Operators II. Acta Math. 128, 183–269 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  9. Freeden, W.: Metaharmonic Lattice Point Theory. Pure and Applied Mathematics. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  10. Fricker, F.: Einfiihrung in die Gitterpunktlehre. Springer, Basel (1982)

    Book  MATH  Google Scholar 

  11. Grafakos, L.: Classical and Modern Fourier Analysis. Graduate Texts in Mathematics. Springer, New York (2008)

    MATH  Google Scholar 

  12. Heath-Brown, D.R.: Lattice points in the sphere. In: Zakopane K.G. (ed.) Proceedings Number Theory Conference, vol. 2, pp. 883–892. (1999)

  13. Helgason, S.: Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators and Spherical Functions. S. Helgason, New York (1984)

    MATH  Google Scholar 

  14. Hlawka, E.: Uber integrale auf konvexen körpern I. Montash. Math. 54, 1–36 (1950)

    Article  MATH  Google Scholar 

  15. Hörmander, L.: The spectral function of an elliptic operator. Acta Math. 121, 193–218 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hörmander, L.: Fourier integral operators I. Acta Math. 127, 79–183 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hörmander, L.: The Analysis of Linear Partial Differential Operators. Classics in Mathematics. Springer, New York (2003)

    Book  MATH  Google Scholar 

  18. Huxley, M.N.: Exponential sums and lattice points III. Proc. Lond. Math. Soc. 87, 591–609 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ivrii, V.: Microlocal Analysis and Precise Spectral Asymptotics. Springer Monographs in Mathematics. Springer, New York (1998)

    Book  MATH  Google Scholar 

  20. Knapp, A.W.: Representation Theory of Semisimple Lie Groups. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1986)

    Book  MATH  Google Scholar 

  21. Levitan, B.M.: On the asymptotic behaviour of the spectral function of a self-adjoint differential equation of second order. Isv. Akad. Nauk. SSSR Ser. Mat. 16, 325–352 (1952)

    Google Scholar 

  22. Malysev, A.V.: On representations of integers by positive quadratic forms. Trudy V.A. Steklov Math. Inst. 65, 1–212 (1962)

    MathSciNet  Google Scholar 

  23. McKean, H.P., Singer, I.: Curvature and the eigenvalues of the Laplacian. J. Differ. Geom. 1, 43–69 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  24. Morris, C., Taheri, A.: On the periodic orbits of the geodesic flow on a compact Lie group, the lattice of weights and the Cartan subalgebra (in preparation, 2017)

  25. Pommerenke, C.: Uber die Gleichverteilung von Gitterpunkten auf mdimensionalen Ellipsoiden. Acta Arith. 5, 227–257 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shahrokhi-Dehkordi, M.S., Taheri, A.: Generalised twists, stationary loops and the Dirichlet energy on a space of measure preserving maps. Calc. Var. PDEs 35, 191–213 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  28. Sogge, C.: Fourier Integrals in Classical Analysis. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  29. Sogge, C.: Hangzhou Lectures on Eigenfunctions of the Laplacian. Annals of Mathematics Studies. Princeton University Press, Princeton (2014)

    Book  MATH  Google Scholar 

  30. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  31. Taheri, A.: Function spaces and partial differential equations. Oxford Lecture Series in Mathematics and its Applications, vols. I & II, OUP. (2015)

  32. Taheri, A.: Homotopy classes of self-maps of annuli, generalised twists and spin degree. Arch. Ration. Mech. Anal. 197, 239–270 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Taheri, A.: Spherical twists, stationary loops and harmonic maps from generalised annuli into spheres. NoDEA 19, 79–95 (2012)

    Article  MATH  Google Scholar 

  34. Walfisz, A.: Uber Gitterpunkte in vierdimensionalen Ellipsoiden. Math. Z. 72(1959), 259–278 (1960)

    MathSciNet  MATH  Google Scholar 

  35. Weyl, H.: Über die asymptotische Verteilung der Eigenwerte, Nachrichten der Königlichen Gesellschaft der Wissenschaftenzu Göttingen. Math. Phys. Klasse 110–117 (1911)

  36. Weyl, H.: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraum-strauhlung). Math. Ann. 71, 441–479 (1912)

    Article  MathSciNet  MATH  Google Scholar 

  37. Weyl, H.: Über die Abhängigkeit der Eigenschwingungen einer Membran und deren Begrenzung. J. Reine Angew. Math. 141, 1–11 (1912)

    MathSciNet  MATH  Google Scholar 

  38. Weyl, H.: The Classical Groups: Their Invariants and Representations. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1939)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Taheri.

Additional information

Communicated by Hartmut Führ.

Asymptotics of Weighted Integrals Involving Bessel Functions

Asymptotics of Weighted Integrals Involving Bessel Functions

In this appendix we present the proof of an estimate used earlier in the paper. This is concerned with the asymptotics of Bessel functions and their weighted integrals.

Proposition 6.1

Let \(\alpha \ge 2\) and \(\beta >-1/2\). Then there exist constants \(M>0\) and \(c>0\) such that for any \(z \ge M\) we have

$$\begin{aligned} \int _0^z t^{\alpha +\beta } J_{\beta }(t) \, dt \le c z^{\alpha +\beta -\frac{1}{2}}. \end{aligned}$$
(90)

Proof

Using the identity established in Lemma 6.1 below we can write

$$\begin{aligned} \int _{0}^{z} t^{\alpha +\beta } J_{\beta }(t) \, dt&= z^{\alpha +\beta }J_{\beta +1}(z) - (\alpha -1) \int _0^z t^{\alpha +\beta -1}J_{\beta +1}(t) \, dt. \end{aligned}$$

Next in virtue of the asymptotic decay of Bessel function at infinity (see, e.g., Stein and Weiss [30]) it follows that there exists \(M>0\) such that \(J_{\beta +1}(z) \le {cz^{-\frac{1}{2}}}\) for \(z>M\). Hence we can write

$$\begin{aligned} \int _{0}^{z} t^{\alpha +\beta } J_{\beta }(t) \, dt \le c_1 z^{\alpha +\beta -\frac{1}{2}} + c_2 \int _M^z t^{\alpha +\beta -\frac{3}{2}} \, dt \end{aligned}$$

from which the conclusion follows at once. \(\square \)

Lemma 6.1

Let \(\alpha \ge 2\) and \(\beta >-1/2\) with \(z \in {\mathbb R}\).Then the following identity holds

$$\begin{aligned} \int _{0}^{z} t^{\alpha +\beta } J_{\beta }(t) \, dt = z^{\alpha +\beta }J_{\beta +1}(z) - (\alpha -1) \int _0^z t^{\alpha +\beta -1}J_{\beta +1}(t) \, dt \end{aligned}$$
(91)

Proof

Starting from the following weighted integral identity for Bessel functions (cf., e.g., Grafakos [11] Appendix B.3)

$$\begin{aligned} \int _0^z J_{\beta -1}(t) t^\beta \, dt = z^{\beta } J_{\beta }(z) \end{aligned}$$

we can write

$$\begin{aligned} \int _0^z t^{\alpha +\beta -1}J_{\beta +1} (t) dt&= \int _0^z t^{\alpha -2} \int _0^t s^{\beta +1}J_{\beta }(s) \, ds dt = \int _0^z s^{\beta +1}J_{\beta }(s) \int _s^z t^{\alpha -2} \, dt ds. \end{aligned}$$

Now integrating the term on the right gives

$$\begin{aligned} \int _0^z t^{\alpha +\beta -1}J_{\beta +1} (t) \, dt&= \frac{1}{\alpha -1}\int _0^z s^{\beta +1}J_{\beta }(s) [z^{\alpha -1}-s^{\alpha -1}] \, ds \\&= \frac{1}{\alpha -1}z^{\alpha +\beta }J_{\beta +1}(z) - \frac{1}{\alpha -1}\int _0^z s^{\beta +\alpha }J_{\beta }(s) \, ds \end{aligned}$$

and so the conclusion follows by simple manipulation of the above. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris, C., Taheri, A. On Weyl’s Asymptotics and Remainder Term for the Orthogonal and Unitary Groups. J Fourier Anal Appl 24, 184–209 (2018). https://doi.org/10.1007/s00041-017-9522-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-017-9522-1

Keywords

Mathematics Subject Classification

Navigation