Skip to main content
Log in

Nonlinear Frames and Sparse Reconstructions in Banach Spaces

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In the first part of this paper, we consider nonlinear extension of frame theory by introducing bi-Lipschitz maps F between Banach spaces. Our linear model of bi-Lipschitz maps is the analysis operator associated with Hilbert frames, p-frames, Banach frames, g-frames and fusion frames. In general Banach space setting, stable algorithms to reconstruct a signal x from its noisy measurement \(F(x)+\epsilon \) may not exist. In this paper, we establish exponential convergence of two iterative reconstruction algorithms when F is not too far from some bounded below linear operator with bounded pseudo-inverse, and when F is a well-localized map between two Banach spaces with dense Hilbert subspaces. The crucial step to prove the latter conclusion is a novel fixed point theorem for a well-localized map on a Banach space. In the second part of this paper, we consider stable reconstruction of sparse signals in a union \(\mathbf{A}\) of closed linear subspaces of a Hilbert space \(\mathbf{H}\) from their nonlinear measurements. We introduce an optimization framework called a sparse approximation triple \((\mathbf{A}, \mathbf{M}, \mathbf{H})\), and show that the minimizer

$$\begin{aligned} x^*=\mathrm{argmin}_{\hat{x}\in {\mathbf M}\ \mathrm{with} \ \Vert F(\hat{x})-F(x^0)\Vert \le \epsilon } \Vert \hat{x}\Vert _{\mathbf M} \end{aligned}$$

provides a suboptimal approximation to the original sparse signal \(x^0\in \mathbf{A}\) when the measurement map F has the sparse Riesz property and the almost linear property on \({\mathbf A}\). The above two new properties are shown to be satisfied when F is not far away from a linear measurement operator T having the restricted isometry property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldroubi, A., Baskakov, A., Krishtal, I.: Slanted matrices, Banach frames, and sampling. J. Funct. Anal. 255, 1667–1691 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aldroubi, A., Sun, Q., Tang, W.-S.: \(p\)-frames and shift invariant subspaces of \(L^p\). J. Fourier Anal. Appl. 7, 1–21 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beck, A., Eldar, Y.C.: Sparsity constrained nonlinear optimization: optimality conditions and algorithms. SIAM J. Optim. 23, 1480–1509 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blackadar, B., Cuntz, J.: Differential Banach algebra norms and smooth subalgebras of \({C}^*\)-algebras. J. Oper. Theory 26, 255–282 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Blumensath, T.: Compressed sensing with nonlinear observations and related nonlinear optimization problems. IEEE Trans. Inform. Theory 59, 3466–3474 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blumensath, T., Davies, M.E.: Sampling theorems for signals from the union of finite-dimensional linear subspaces. IEEE Trans. Inform. Theory 55, 1872–1882 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blumensath, T., Davies, M.E.: Sampling and reconstructing signals from a union of linear subspaces. IEEE Trans. Inform. Theory 57, 4660–4671 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borwein, J.M., Fitzpatrick, S.: Existence of nearest points in Banach spaces. Can. J. Math. 61, 702–720 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, T., Zhang, A.: Sharp RIP bound for sparse signal and low-rank matrix recovery. Appl. Comput. Harmon. Anal. 35, 74–93 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59, 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Candes, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51, 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Casazza, P.G., Han, D., Larson, D.R.: Frames for Banach spaces. The Functional and Harmonic Analysis of Wavelets and Frames. Contemporary Mathematics, vol. 247, pp. 149–182. American Mathematical Society, Providence, RI (1999)

    Chapter  Google Scholar 

  13. Casazza, P.G., Kutyniok, G., Li, S.: Fusion frames and distributed processing. Appl. Comput. Harmon. Anal. 25, 114–132 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cheng, C., Jiang, Y., Sun, Q.: Spatially distributed sampling and reconstruction, arXiv:1511.0841

  15. Cheng, C., Jiang, Y., Sun, Q.: Sampling and Galerkin reconstruction in reproducing kernel spaces. Appl. Comput. Harmon. Anal. 41, 638–659 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc., Boston (2003)

    Book  MATH  Google Scholar 

  17. Christensen, O., Stoeva, D.T.: \(p\)-frames in separable Banach spaces. Adv. Comput. Math. 18, 117–126 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Christensen, O., Strohmer, T.: The finite section method and problems in frame theory. J. Approx. Theory 133, 221–237 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dieudonné, J.: Foundations of Modern Analysis. Pure and Applied Mathematics, vol. 10-I. Academic Press, New York-London (1969)

    MATH  Google Scholar 

  20. Dvorkind, T.G., Eldar, Y.C., Matusiak, E.: Nonlinear and nonideal sampling: theory and methods. IEEE Trans. Signal Process. 56, 5874–5890 (2008)

    Article  MathSciNet  Google Scholar 

  21. Ehler, M., Fornasier, M., Sigl, J.: Quasi-linear compressed sensing. Multisc. Model. Simul. 12, 725–754 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Eldar, Y.C., Kuppinger, P., Bolcskei, H.: Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans. Signal Process. 58, 3042–3054 (2010)

    Article  MathSciNet  Google Scholar 

  23. Eldar, Y.C., Kutyniok, G.: Compressed Sensing: Theory and Applications. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  24. Eldar, Y.C., Mishali, M.: Robust recovery of signals from a structured union of subspaces. IEEE Trans. Inf. Theory 55, 5302–5316 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Elhamifar, E., Vidal, R.: Block-sparse recovery via convex optimization. IEEE Trans. Signal Process. 60, 4094–4107 (2012)

    Article  MathSciNet  Google Scholar 

  26. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  27. Gevirtz, J.: Injectivity in Banach spaces and the Mazur–Ulam theorem on isometries. Trans. Am. Math. Soc. 274, 307–318 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gröchenig, K.: Wiener’s lemma: theme and variations, an introduction to spectral invariance and its applications. In: Massopust, P., Forster, B. (eds.) Four Short Courses on Harmonic Analysis: Wavelets, Frames, Time-Frequency Methods, and Applications to Signal and Image Analysis, pp. 175–234. Springer, Berlin (2010)

    Chapter  Google Scholar 

  29. Gröchenig, K., Klotz, A.: Noncommutative approximation: inverse-closed subalgebras and off-diagonal decay of matrices. Constr. Approx. 32, 429–466 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gröchenig, K., Leinert, M.: Symmetry of matrix algebras and symbolic calculus for infinite matrices. Trans. Am. Math. Soc. 358, 2695–2711 (2006)

    Article  MATH  Google Scholar 

  31. Jaffard, S.: Properiétés des matrices bien localisées prés de leur diagonale et quelques applications. Ann. Inst. Henri Poincaré 7, 461–476 (1990)

    Article  MATH  Google Scholar 

  32. Jia, R.-Q., Micchelli, C.A.: Using the refinement equations for the construction of pre-wavelets II: Powers of two. Curves and Surfaces, pp. 209–246. Academic Press, New York (1991)

    Chapter  Google Scholar 

  33. Jun, K.-L., Park, D.-W.: Almost linearity of \(\epsilon \)-bi-Lipschitz maps between real Banach spaces. Proc. Am. Math. Soc. 124, 217–225 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kissin, E., Shulman, V.S.: Differential properties of some dense subalgebras of \({C}^*\)-algebras. Proc. Edinb. Math. Soc. 37, 399–422 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Krishtal, I.: Wiener’s lemma: pictures at exhibition. Revista Union Matematica Argentina 52, 61–79 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Landau, H.J., Miranker, W.L.: The recovery of distorted band-limited signals. J. Math. Anal. Appl. 2, 97–104 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lau, K.-S.: On a sufficient condition for proximity. Trans. Am. Math. Soc. 251, 343–356 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lu, Y.M., Do, M.N.: A theory for sampling signals from a union of subspaces. IEEE Trans. Signal Process. 56, 2334–2345 (2008)

    Article  MathSciNet  Google Scholar 

  39. Nashed, M.Z., Sun, Q.: Sampling and reconstruction of signals in a reproducing kernel subspace of \({L}^p({{\mathbb{R}}}^d)\). J. Funct. Anal. 258, 2422–2452 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rauhut, H., Ward, R.: Interpolation via weighted l1 minimization. Appl. Comput. Harmon. Anal. 40, 321–351 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rieffel, M.A.: Leibniz seminorms for “matrix algebras converge to the sphere”. Quanta of Maths. Clay Mathematics Proceedings, vol. 11, pp. 543–578. American Mathematical Society, Providence, RI (2010)

    Google Scholar 

  42. Sandberg, I.W.: Notes on pq theorems. IEEE Trans. Circuit Syst. I 41, 303–307 (1994)

    Article  Google Scholar 

  43. Shin, C.E., Sun, Q.: Stability of localized operators. J. Funct. Anal. 256, 2417–2439 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sun, Q.: Non-uniform sampling and reconstruction for signals with finite rate of innovations. SIAM J. Math. Anal. 38, 1389–1422 (2006/2007)

  45. Sun, Q.: Wiener’s lemma for infinite matrices. Trans. Am. Math. Soc. 359, 3099–3123 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sun, Q.: Sparse approximation property and stable recovery of sparse signals from noisy measurements. IEEE Trans. Signal Process. 10, 5086–5090 (2011)

    Article  MathSciNet  Google Scholar 

  47. Sun, Q.: Wiener’s lemma for infinite matrices II. Constr. Approx. 34, 209–235 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sun, Q.: Recovery of sparsest signals via \(\ell ^q\)-minimization. Appl. Comput. Harmon. Anal. 32, 329–341 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sun, Q.: Localized nonlinear functional equations and two sampling problems in signal processing. Adv. Comput. Math. 40, 415–458 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Sun, Q., Xian, J.: Rate of innovation for (non-)periodic signals and optimal lower stability bound for filtering. J. Fourier Anal. Appl. 20, 119–134 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sun, W.: G-frames and g-Riesz bases. J. Math. Anal. Appl. 322, 437–452 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. Temlyakov, V.: Greedy Approximation. Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  53. Zeidler, E., Wadsack, P.: Nonlinear Functional Analysis and Its Applications, vol. 1. Springer, Berlin (1998)

    Google Scholar 

  54. Zheng, L., Maleki, A., Wang, X., Long, T.: Does \(\ell _p\)-minimization outperform \(\ell _1\)-minimization? arXiv:1501.03704

Download references

Acknowledgments

The project is partially supported by the National Science Foundation (DMS-1412413) and Singapore Ministry of Education Academic Research Fund Tier 1 Grant (No. R-146-000-193-112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiyu Sun.

Additional information

Communicated by Peter G. Casazza.

Appendices

Appendix 1: Bi-Lipschitz Map and Uniform Stability

In this appendix, we provide some sufficient conditions, mostly optimal, for a differentiable map to have the bi-Lipschitz property (1.1), see Theorems 6.3 and 6.5 in Banach space setting, and Theorems 6.7 and 6.9 in Hilbert space setting.

For a differentiable map F from one Banach space \({\mathbf B}_1\) to another Banach space \({\mathbf B}_2\) that has the bi-Lipschitz property (1.1), we have

$$\begin{aligned} A \Vert y\Vert \le \frac{\Vert F(x+ty)-F(x)\Vert }{t} \le B \Vert y\Vert \quad \mathrm{for \ all} \ \ x, y\in {\mathbf B}_1\ \mathrm{and} \ t>0, \end{aligned}$$

where AB are the constants in the bi-Lipschitz property (1.1). Then taking limit as \(t\rightarrow 0\) leads to a necessary condition for a differentiable bi-Lipschitz map.

Theorem 6.1

Let \({\mathbf B}_1\) and \({\mathbf B}_2\) be Banach spaces. If \(F:{\mathbf B}_1\rightarrow {\mathbf B}_2\) is a differentiable map that has the bi-Lipschitz property (1.1), then its derivative \(F'(x), x\in {\mathbf B}_1\), has the uniform stability property (1.2).

For \(\mathbf{B}_1=\mathbf{B}_2={\mathbb R}\), a differentiable map F with the uniform stability property (1.2) for its derivative has the bi-Lipschitz property (1.1), but it is not true in general Banach space setting. Maps \(E_{p, \epsilon }, 1\le p\le \infty , \epsilon \in [0, \pi /4)\), from \({\mathbb R}\) to \({\mathbb R}^2\) in the example below are such examples.

Example 6.2

For \(1\le p\le \infty \) and \(\epsilon \in [0, \pi /4)\), define \(E_{p, \epsilon }: {\mathbb R}\longmapsto {\mathbb R}^2\) by

$$\begin{aligned} E_{p, \epsilon }(t)=\left\{ \begin{array}{l} (-\cos \epsilon , \sin \epsilon )- (\sin \epsilon , \cos \epsilon )(t+\pi /2+\epsilon )\\ \mathrm{if} \ t\in (-\infty , -\pi /2-\epsilon ),\\ (\sin t, -\cos t) \mathrm{if} \ t\in [-\pi /2-\epsilon , \pi /2+\epsilon ],\\ (\cos \epsilon , \sin \epsilon )+ (-\sin \epsilon , \cos \epsilon )(t-\pi /2-\epsilon )\\ \mathrm{if} \ t\in (\pi /2+\epsilon , \infty ), \end{array}\right. \end{aligned}$$
(6.1)

see Fig. 1. The maps \(E_{p, \epsilon }\) just defined do not have the bi-Lipschitz property (1.1), but their derivatives \(E_{p, \epsilon }^\prime \) have the uniform stability property (1.2),

$$\begin{aligned} \frac{\sqrt{2}}{2} |\tilde{t}|\le & {} \Vert E_{p, \epsilon }^\prime (t) \tilde{t}\Vert _p=\left\{ \begin{array}{ll} \Vert (\tilde{t}\sin \epsilon , \tilde{t}\cos \epsilon )\Vert _p &{} \mathrm{if} \ t< -\pi /2-\epsilon \\ \Vert (\tilde{t}\cos t, \tilde{t}\sin t)\Vert _p &{} \mathrm{if} \ |t|\le \pi /2+\epsilon \\ \Vert (-\tilde{t} \sin \epsilon , \tilde{t} \cos \epsilon )\Vert _p &{} \mathrm{if} \ t>\pi /2+\epsilon \end{array}\right. \nonumber \\\le & {} 2|\tilde{t}|\ \ \mathrm{for \ all} \ t,\tilde{t}\in {\mathbb R}, \end{aligned}$$

where \(\Vert \cdot \Vert _p, 1\le p\le \infty \), is the p-norm on the Euclidean space \({\mathbb R}^2\).

Fig. 1
figure 1

Maps \(E_{p, \epsilon }\) from \({\mathbb R}\) to \({\mathbb R}^2\) with \(\epsilon =0\) (left) and \(\epsilon =\pi /6\) (right)

Given a differentiable bi-Lipschitz map F from one Banach space \({\mathbf B}_1\) to another Banach space \({\mathbf B}_2\) such that its derivative \(F'(x)\) is uniformly stable, define

$$\begin{aligned} \alpha _F:=\sup _{\Vert y\Vert =1}\inf _{\Vert z\Vert =1}\sup _{x\in {\mathbf B}_1}\Big \Vert \frac{F'(x)y}{\Vert F'(x)y\Vert }-z\Big \Vert . \end{aligned}$$
(6.2)

The quantity \(\alpha _F\) is the minimal radius such that for any \(0\ne y\in {\mathbf B}_1\), the set \({\mathbb B}(y)\) of unit vectors \(F'(x)y/\Vert F'(x)y\Vert , x\in {\mathbf B}_1\), is contained in a ball of radius \(\alpha _F<1\) centered at a unit vector. Our next theorem shows that a differentiable bi-Lipschitz map F with its derivative \(F'(x)\) being uniformly stable and continuous and with \(\alpha _F\) in (6.2) satisfying \(\alpha _F<1\) has the bi-Lipschitz property (1.1).

Theorem 6.3

Let \({\mathbf B}_1\) and \({\mathbf B}_2\) be Banach spaces, and F be a continuously differentiable map from \({\mathbf B}_1\) to \({\mathbf B}_2\) with the property that its derivative has the uniform stability property (1.2). If \(\alpha _F\) in (6.2) satisfies

$$\begin{aligned} \alpha _F<1,\end{aligned}$$
(6.3)

then F is a bi-Lipschitz map.

Proof

Given \(x, y\in {\mathbf B}_1\) with \(y\ne 0\),

$$\begin{aligned} F(x+y)-F(x)= & {} \int _0^1 F'(x+ty) y dt = \left( \int _0^1 \Vert F'(x+ty)y\Vert dt\right) z\\&+ \int _0^1 \Vert F'(x+ty)y\Vert \left( \frac{F'(x+ty)y}{\Vert F'(x+ty)y\Vert }-z \right) dt, \end{aligned}$$

where \(z\in {\mathbf B}_2\) with \(\Vert z\Vert =1\). Thus

$$\begin{aligned} \Vert F(x+y)-F(x)\Vert\ge & {} \left( \int _0^1 \Vert F'(x+ty)y\Vert dt\right) \\&\quad \times \left( 1-\inf _{\Vert z\Vert =1} \sup _{0\le t\le 1}\left\| \frac{F'(x+ty)y}{\Vert F'(x+ty)y\Vert }-z \right\| \right) \\\ge & {} (1-\alpha _F) \left( \int _0^1 \Vert F'(x+ty)y\Vert dt\right) \ge (1-\alpha _F) A\Vert y\Vert , \end{aligned}$$

and

$$\begin{aligned} \Vert F(x+y)-F(x)\Vert \le \int _0^1 \Vert F'(x+ty)y\Vert dt\le B\Vert y\Vert , \end{aligned}$$

where AB are lower and upper stability bounds in the uniform stability property (1.2). Combining the above two estimates completes the proof. \(\square \)

Remark 6.4

The U-shaped map \(E_{p, \epsilon }\) in Example 6.2 with \(p=\infty \) and \(\epsilon =0\) is not a bi-Lipschitz map and

$$\begin{aligned} \alpha _{E_{\infty , 0}}= & {} \inf _{\Vert z\Vert _\infty =1} \sup _{|t|\le \pi /2}\left\| \frac{(\cos t, \sin t)}{\max (|\cos t|, |\sin t|)}-z\right\| _\infty \\= & {} \sup _{|t|\le \pi /2}\left\| \frac{(\cos t, \sin t)}{\max (|\cos t|, |\sin t|)}-(1, 0)\right\| _\infty =1. \end{aligned}$$

This indicates that the geometric condition (6.3) about \(\alpha _F\) is optimal.

For a differentiable map F not far away from a bounded below linear operator T, we suggest using \(Ty/\Vert Ty\Vert \) as the center of the ball containing the set of unit vectors \(F'(x) y/\Vert F'(x) y\Vert , x\in \mathbf{B}_1\), and define the minimal radius of that ball by \(\beta _{F,T}\) in (1.5). Then obviously

$$\begin{aligned} \alpha _F\le \beta _{F,T}. \end{aligned}$$
(6.4)

This together with Theorem 6.3 implies that a differentiable map F satisfying \(\beta _{F, T}<1\) is a bi-Lipschitz map.

Theorem 6.5

Let \({\mathbf B}_1\) and \({\mathbf B}_2\) be Banach spaces, and F be a continuously differentiable map from \({\mathbf B}_1\) to \({\mathbf B}_2\) with its derivative having the uniform stability property (1.2). If \(T\in {\mathcal B}({\mathbf B}_1, {\mathbf B}_2)\) is bounded below and satisfies (1.4), then F is a bi-Lipschitz map.

We may use the following quantity to measure the distance between differentiable map F and bounded below linear operator T,

$$\begin{aligned} \delta _{F, T}:=\sup _{0\ne y\in {\mathbf B}_1} \sup _{x\in {\mathbf B}_1}\frac{\Vert F(x+y)-F(x)-Ty\Vert }{\Vert Ty\Vert }= \sup _{0\ne y\in {\mathbf B}_1} \sup _{z\in {\mathbf B}_1}\frac{\Vert F'(z)y-Ty\Vert }{\Vert Ty\Vert }. \end{aligned}$$
(6.5)

By direct computation,

$$\begin{aligned} \beta _{F, T} \le \sup _{\Vert y\Vert =1} \sup _{x\in {\mathbf B}_1} \Big (\frac{\Vert F'(x)y-Ty\Vert }{\Vert F'(x)y\Vert }+\frac{\big |\Vert F'(x)y\Vert -\Vert Ty\Vert \big |}{\Vert F'(x)y\Vert }\Big )\le \frac{2\delta _{F,T}}{1-\delta _{F,T}}. \end{aligned}$$

Thus the geometric condition (1.4) in Theorem 6.5 can be replaced by the condition \(\delta _{F,T}<1/3\).

Corollary 6.6

Let \({\mathbf B}_1, {\mathbf B}_2, F\) and T be as in Theorem 6.5. If \(\delta _{F,T}<1/3\), then F is a bi-Lipschitz map.

The geometric condition (1.4) to guarantee the bi-Lipschitz property for the map F is optimal in general Banach space setting, as \(\beta _{E_{\infty , 0}, T_1}=1\) for the U-shaped map \(E_{\infty , 0}\) in Example 6.2 and the linear operator \(T_1t:=(t,0), t\in {\mathbb R}\). But in Hilbert space setting, as shown in the next theorem, the geometric condition (1.4) could be relaxed to \(\beta _{F,T}<\sqrt{2}\).

Theorem 6.7

Let \({\mathbf H}_1\) and \({\mathbf H}_2\) be Hilbert spaces, and let \(F:{\mathbf H}_1\rightarrow {\mathbf H}_2\) be a continuously differentiable map with its derivative having the uniform stability property (1.2). If there exists a linear operator \(T\in {\mathcal B}({\mathbf H}_1, {\mathbf H}_2)\) satisfying (1.3) and (1.6), then F is a bi-Lipschitz map.

Proof

Take \(u, v\in {\mathbf H}_1\) with \(v\ne 0\). Then

$$\begin{aligned} \Vert F(u+v)-F(u)\Vert \le \int _0^1 \Vert F'(u+tv) v\Vert dt\le B\Vert v\Vert , \end{aligned}$$
(6.6)

where B is the upper stability bound in (1.2). Observe that

$$\begin{aligned} \langle F'(u)v, Tv\rangle = \Vert F'(u) v\Vert \Vert Tv\Vert \left( 1-\frac{1}{2} \Big \Vert \frac{F'(u)v}{\Vert F'(u)v\Vert }-\frac{Tv}{\Vert Tv\Vert }\Big \Vert ^2\right) . \end{aligned}$$

Then

$$\begin{aligned} \langle F'(u)v, Tv\rangle \ge \frac{2-(\beta _{F,T})^2}{2} \Vert F'(u) v\Vert \Vert Tv\Vert , \end{aligned}$$

which implies that

$$\begin{aligned} \langle F(u+v)-F(u), Tv\rangle= & {} \int _0^1 \langle F'(u+tv)v, Tv\rangle dt\nonumber \\\ge & {} \frac{2-(\beta _{F,T})^2}{2} \left( \int _0^1 \Vert F'(u+tv) v\Vert dt\right) \Vert Tv\Vert \nonumber \\\ge & {} \frac{2-(\beta _{F,T})^2}{2}A \Vert Tv\Vert \Vert v\Vert , \end{aligned}$$
(6.7)

where A is the lower stability bound in (1.2). Hence

$$\begin{aligned} \Vert F(u+v)-F(u)\Vert \ge \frac{\langle F(u+v)-F(u), Tv\rangle }{\Vert Tv\Vert } \ge \frac{2-( \beta _{F,T})^2}{2}A \Vert v\Vert . \end{aligned}$$
(6.8)

Combining (6.6) and (6.8) proves the bi-Lipschitz property for F. \(\square \)

Remark 6.8

The geometric condition (1.6) is optimal as for the U-shaped map \(E_{p, \epsilon }\) in Example 6.2 with \(p=2\) and \(\epsilon =0\),

$$\begin{aligned} \beta _{E_{2, 0}, T_1}= \sup _{\tilde{t}\ne 0} \sup _{|t|\le \pi /2}\left\| \frac{(\tilde{t}\cos t, \tilde{t}\sin t)}{(\cos ^2 t+\sin ^2 t)^{1/2} |\tilde{t}|}-\frac{(\tilde{t},0)}{|\tilde{t}|}\right\| _2=\sqrt{2} \end{aligned}$$
(6.9)

where \(T_1\tilde{t}=(\tilde{t}, 0), \tilde{t}\in {\mathbb R}\).

Define

$$\begin{aligned} \theta _{F,T}=\sup _{u\in {\mathbf H}_1, v\ne 0} \arccos \left( \frac{\langle F'(u) v, Tv\rangle }{\Vert F'(u)v\Vert \Vert Tv\Vert }\right) , \end{aligned}$$

the maximal angle between vectors \(F'(u)v\) and Tv in the Hilbert space \({\mathbf H}_2\). Then

$$\begin{aligned} \beta _{F, T} =2\sin \frac{\theta _{F,T}}{2}. \end{aligned}$$

So the geometric condition (1.6) can be interpreted as that the angles between \(F'(u)v\) and Tv are less than or equal to \(\theta _{F,T}\in [0, \pi /2)\) for all \(u, v\in {\mathbf H}_1\). The above equivalence between the geometric condition (1.6) and the angle condition \(\theta _{F, T}<\pi /2\), together with (1.2) and (1.3), implies the existence of positive constants \(A_1, B_1\) such that

$$\begin{aligned} A_1 \Vert Tv\Vert ^2 \le \langle F'(u)v, Tv\rangle \le B_1 \Vert Tv\Vert ^2, \ u,v\in {\mathbf H}_1. \end{aligned}$$
(6.10)

The converse can be proved to be true too. Thus \(\beta _{F, T}<\sqrt{2}\) if and only if \(S:=T^*F\) is strictly monotonic. Here a bounded map S on a Hilbert space \({\mathbf H}\) is said to be strictly monotonic [53] if there exist positive constants m and M such that

$$\begin{aligned} m \Vert u-v\Vert ^2\le \langle u-v, S(u)-S(v)\rangle \le M \Vert u-v\Vert ^2 \ \mathrm{for \ all} \ u,v\in {\mathbf H}. \end{aligned}$$

As an application of the above equivalence, Theorem 6.7 can be reformulated as follows.

Theorem 6.9

Let \({\mathbf H}_1\) and \({\mathbf H}_2\) be Hilbert spaces, and let \(F:{\mathbf H}_1\rightarrow {\mathbf H}_2\) be a continuously differentiable map with its derivative having the uniform stability property (1.2). If there exists a linear operator \(T\in {\mathcal B}({\mathbf H}_1, {\mathbf H}_2)\) satisfying (1.3) and (6.10), then F is a bi-Lipschitz map.

From Theorem 6.9 we obtain the following result similar to the one in Corollary 6.6.

Corollary 6.10

Let \({\mathbf H}_1, {\mathbf H}_2\) and F be as in Theorem 6.9. If there exists a bounded below linear operator \(T\in {\mathcal B}({\mathbf H}_1, {\mathbf H}_2)\) with \(\delta _{F,T}<\sqrt{2}-1\), then F is a bi-Lipschitz map.

Given a differentiable map F, it is quite technical in general to construct linear operator T satisfying (1.3) and (1.4) in Banach space setting (respectively (1.3) and (6.10) in Hilbert space setting). A conventional selection is that \(T=F'(x_0)\) for some \(x_0\in {\mathbf B}_1\), but such a selection is not always favorable. Let \(\Phi =(\phi _\lambda )_{\lambda \in \Lambda }\) be impulse response vector with its entry \(\phi _\lambda \) being the impulse response of the signal generating device at the innovation position \(\lambda \in \Lambda \), and \(\Psi =(\psi _\gamma )_{\gamma \in \Gamma }\) be sampling functional vector with entry \(\psi _\gamma \) reflecting the characteristics of the acquisition device at the sampling position \(\gamma \in \Gamma \). In order to consider bi-Lipschitz property of the nonlinear sampling map

$$\begin{aligned} S_{f, \Phi , \Psi }: \ell ^2(\Lambda )\ni x \longmapsto x^T\Phi \overset{\mathrm{companding }}{\longmapsto }f(x^T\Phi ) \overset{\mathrm{sampling}}{\longmapsto }\langle f(x^T\Phi ), \Psi \rangle \in \ell ^2(\Gamma ) \end{aligned}$$

related to instantaneous companding \(h(t)\longmapsto f(h(t))\), a linear operator

$$\begin{aligned} T:= A_{\Phi , \Phi } \left( A_{\Phi , \Psi } (A_{\Psi , \Psi })^{-1} A_{\Psi , \Phi }\right) ^{-1} A_{\Phi , \Psi } (A_{\Psi , \Psi })^{-1} \end{aligned}$$

satisfying (1.3) and (6.10) is implicitly introduced in [49], where

$$\begin{aligned} A_{\Phi , \Psi }=(\langle \phi _\lambda , \psi _\gamma \rangle )_{\lambda \in \Lambda , \gamma \in \Gamma } \end{aligned}$$

is the inter-correction matrix between \(\Phi \) and \(\Psi \).

Appendix 2: Sparse Approximation Triple

In this appendix, we establish convergence of the greedy algorithm (5.3) in the Banach space \({\mathbf M}\), and use it to estimate an approximation error in the Hilbert space \({\mathbf H}_1\).

1.1 (a) Greedy Algorithm

In this subsection, we show that the greedy algorithm (5.3) converges, which play an important role in the proofs of Theorems 5.1 and 7.2.

Theorem 7.1

Let \(({\mathbf A}, {\mathbf M}, {\mathbf H}_1)\) be a sparse approximation triple. Then \(x_{\mathbf A, \mathbf M}^k, k\ge 0\), in the greedy algorithm (5.3) converges to \(x\in {\mathbf M}\),

$$\begin{aligned} \lim _{k\rightarrow \infty } \left\| x_{\mathbf A, \mathbf M}^k-x \right\| _{\mathbf M}=0. \end{aligned}$$
(7.1)

Proof

The convergence of \(x_{\mathbf A, \mathbf M}^k, k\ge 0\), follows from

$$\begin{aligned} \sum _{k=0}^K\left\| x_{\mathbf A, \mathbf M}^{k+1}-x_{\mathbf A, \mathbf M}^k\right\| _{\mathbf M}= \Vert x\Vert _{\mathbf M}-\left\| x-x_{\mathbf A, \mathbf M}^{K+1}\right\| _{\mathbf M}\le \Vert x\Vert _{\mathbf M}, \ K\ge 0, \end{aligned}$$
(7.2)

which is obtained by applying the norm splitting property (1.16) recursively.

Denote by \(x_{\mathbf A, \mathbf M}^\infty \in {\mathbf M}\) the limit of \(x_{\mathbf A, \mathbf M}^{k}, k\ge 0\). Set

$$\begin{aligned} z=\mathrm{argmin}_{\hat{x}\in {\mathbf A}} \left\| x-x_{\mathbf A, \mathbf M}^\infty -\hat{x}\right\| _{\mathbf M}. \end{aligned}$$

Then for all \(k\ge 1\),

$$\begin{aligned} \left\| x-x_{\mathbf A, \mathbf M}^{k+1}\right\| _{\mathbf M}\le & {} \left\| x-x_{\mathbf A, \mathbf M}^{k}-z\right\| _{\mathbf M} \le \left\| x-x_{\mathbf A, \mathbf M}^{\infty }-z\right\| _{\mathbf M} + \left\| x_{\mathbf A, \mathbf M}^{\infty }- x_{\mathbf A, \mathbf M}^{k}\right\| _{\mathbf M} \\= & {} \left\| x-x_{\mathbf A, \mathbf M}^{\infty }\right\| _{\mathbf M}- \Vert z\Vert _{\mathbf M}+ \left\| x_{\mathbf A, \mathbf M}^{\infty }- x_{\mathbf A, \mathbf M}^{k}\right\| _{\mathbf M}, \end{aligned}$$

where the first inequality follows from (5.3) and the last equality holds by the norm splitting property (1.16). Therefore

$$\begin{aligned} \Vert z\Vert \le \left\| x_{\mathbf A, \mathbf M}^{\infty }- x_{\mathbf A, \mathbf M}^{k+1}\right\| _{\mathbf M} + \left\| x_{\mathbf A, \mathbf M}^{\infty }- x_{\mathbf A, \mathbf M}^{k}\right\| _{\mathbf M} \rightarrow 0 \ \ \mathrm{as} \ \ k\rightarrow \infty , \end{aligned}$$

which implies that

$$\begin{aligned} 0= \mathrm{argmin}_{\hat{x}\in {\mathbf A}} \left\| x-x_{\mathbf A, \mathbf M}^\infty -\hat{x} \right\| _{\mathbf M}. \end{aligned}$$

Hence the projection of \(x-x_{\mathbf A, \mathbf M}^\infty \) onto \({\mathbf A}_i\) are zero for all \(i\in I\) by the common best approximator property (1.15). This proves the following consistency condition,

$$\begin{aligned} \langle x_{\mathbf A, \mathbf M}^\infty , y\rangle =\langle x, y\rangle \ \mathrm{for \ all} \ y\in {\mathbf A}. \end{aligned}$$
(7.3)

From the consistency property (7.3), we conclude that (7.3) hold for all \(y\in k{\mathbf A}, k\ge 0\), and hence for all y in the closure of \(\cup _{k\ge 0} k{\mathbf A}\). This together with the sparse density property (v) of the sparse approximation triple \((\mathbf{A}, \mathbf{M}, \mathbf{H}_1)\) proves that \(x_{\mathbf A, \mathbf M}^\infty = x\), and hence the convergence (7.1) of \(x_{\mathbf A, \mathbf M}^k, k\ge 0\), to \(x\in {\mathbf M}\). \(\square \)

Given a sparse approximation triple \((\mathbf{A}, \mathbf{M}, \mathbf{H}_1)\), we say that \(x\in {\mathbf M}\) is compressible [7, 24, 26, 40] if \(\{\sigma _{k{\mathbf A}, \mathbf{M}}(x)\}_{k=1}^\infty \) having rapid decay, such as

$$\begin{aligned} \sigma _{k{\mathbf A}, \mathbf{M}}(x)\le C k^{-\alpha }\ \mathrm{for \ some} \ C,\ \alpha >0, \end{aligned}$$

where \(\sigma _{k{\mathbf A}, {\mathbf M}}(x)\) is the best approximation error of x from \(k{\mathbf A}\),

$$\begin{aligned} \sigma _{k{\mathbf A}, {\mathbf M}}(x) :=\inf _{\hat{x}\in k{\mathbf A}}\Vert \hat{x}-x\Vert _{\mathbf M}, \ k\ge 1. \end{aligned}$$
(7.4)

For the sequence \(x_{\mathbf A, \mathbf M}^k, k\ge 0\), in the greedy algorithm (5.3), we have

$$\begin{aligned} \left\| x_{\mathbf A, \mathbf M}^k-x \right\| _{\mathbf M}\ge \sigma _{k{\mathbf A}, \mathbf M}(x), \end{aligned}$$
(7.5)

as \( x_{\mathbf A, \mathbf M}^k\in k{\mathbf A}, k\ge 1.\) The above inequality becomes an equality in the classical sparse recovery setting. We do not know whether and when the greedy algorithm (5.3) is suboptimal, i.e., there exists a positive constant C such that

$$\begin{aligned} \left\| x_{\mathbf A, \mathbf M}^k-x \right\| _{\mathbf M} \le C \sigma _{k{\mathbf A}, \mathbf M}(x),\ x\in M, \end{aligned}$$
(7.6)

even for compressible signals. The reader may refer to [52] for the study of various greedy algorithms.

1.2 (b) Sparse Approximation

In this subsection, we apply Theorem 7.1 to estimate an approximation error, which has been used in the proof of Theorem 4.1.

Theorem 7.2

Let \((\mathbf{A}, \mathbf{M}, \mathbf{H}_1)\) be a sparse approximation triple and \(a_\mathbf{A}\) be as in (1.19). Then

$$\begin{aligned} \Vert x-x_{\mathbf A, \mathbf M}\Vert _{{\mathbf H}_1} \le \sqrt{a_{\mathbf A}} \Vert x\Vert _{\mathbf M}, \ x\in {\mathbf M}, \end{aligned}$$
(7.7)

where \(x_{\mathbf A, \mathbf M}\) is a best approximator of \(x\in \mathbf{M}\).

Proof

Take \(0\ne x\in {\mathbf M}\) and let \(x_{\mathbf A, \mathbf M}^k, k\ge 0\), be as in the greedy algorithm (5.3). Write \(u_k=x_{\mathbf A, \mathbf M}^{k+1}-x_{\mathbf A, \mathbf M}^{k}, k\ge 0\). Thus

$$\begin{aligned} u_k=\mathrm{argmin}_{\hat{x}\in {\mathbf A}} \Vert x-x_{{\mathbf A},{\mathbf M}}^k-\hat{x}\Vert _{\mathbf M}= \mathrm{argmin}_{\hat{x}\in {\mathbf A}} \Vert (x-x_{{\mathbf A},{\mathbf M}}^{k-1})-u_{k-1}-\hat{x}\Vert _{\mathbf M} \in {\mathbf A}, \end{aligned}$$

and

$$\begin{aligned} x-x_{\mathbf A, \mathbf M}=\sum _{k\ge 1} u_k \end{aligned}$$

by Theorem 7.1. This together with (1.16), (1.19), (7.1) and (7.2) implies that

$$\begin{aligned} \Vert x-x_{\mathbf A, \mathbf M}\Vert _{{\mathbf H}_1}\le \sum _{k\ge 1} \Vert u_k\Vert _{{\mathbf H}_1}\le \sqrt{a_{\mathbf A}} \sum _{k\ge 1} \Vert u_{k-1}\Vert _{\mathbf M}\le \sqrt{a_{\mathbf A}}\Vert x\Vert _{\mathbf M}. \end{aligned}$$

This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Tang, WS. Nonlinear Frames and Sparse Reconstructions in Banach Spaces. J Fourier Anal Appl 23, 1118–1152 (2017). https://doi.org/10.1007/s00041-016-9501-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-016-9501-y

Keywords

Navigation