Skip to main content
Log in

Effects of simulated tropical heat waves during development on the morphological and reproductive traits of Africanized honey bee

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Global warming may have a significant negative impact on insects in the tropics due to an increase in the frequency and intensity of heat waves. Heat waves may have a particularly harsh impact on the relatively sessile juvenile stages of holometabolous insects, such as larvae and pupae. The honey bee (Apis mellifera L.) is an important tropical holometabolous insect whose queens and drones may also be negatively impacted by heat waves during their development, leading to reduced reproductive capacity. However, we have little information on the thermal tolerance of honey bee subspecies in tropical regions. To address this knowledge gap, we evaluated the effect of simulated heat waves during development on drones and queens of Africanized A. mellifera in terms of the size, shape, and symmetry of their forewings, as well as their reproductive traits such as sperm concentration and viability in drones, and ovariole number and spermatheca volume in queens. Drones raised at high temperatures were more asymmetric in forewing size but not in shape, and had a smaller body size and reduced sperm concentration and viability compared to those raised at normal hive temperatures. In contrast, no effect of an elevated temperature regime during development was seen in queens in terms of the size and symmetry of the forewing, the number of ovarioles, and the volume of the spermatheca. Our results support the notion that males of insects are more susceptible to high temperatures compared to females. We discuss the implications of our findings for the reproductive fitness of honey bee colonies in tropical regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abou-Shaara HF, Oways AA, Ibrahim YY, Basuny NK (2017) A review of impacts of temperature and relative humidity on various activities of honey bees. Insect Soc 64:455–463

    Article  Google Scholar 

  • Amiri E, Strand M, Rueppell O, Tarpy D (2017) Queen quality and the impact of honey bee diseases on queen health: potential for interactions between two major threats to colony health. Insects 8:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Atkinson D (1994) Temperature and organism size—a biological law for ectotherms? Ad Ecol Res 25:1–58

    Article  Google Scholar 

  • Bieńkowska M, Panasiuk B, Węgrzynowicz P, Gerula D (2011) The effect of different thermal conditions on drone semen quality and number of spermatozoa entering the spermatheca of queen bee. J Apic Sci 55(2):161–168

    Google Scholar 

  • Bookstein FL, Crespi BJ, Smith DR (1997) Fluctuating asymetry in the honey bee, Apis mellifera: efects of ploidy and hybridization. J Evol Biol 10:551–574

    Article  Google Scholar 

  • Boomsma JJ, Baer B, Heinze J (2005) The evolution of male traits in social insects. Annu Rev Entomol 50:395–420

    Article  CAS  PubMed  Google Scholar 

  • Bordier C, Dechatre H, Suchail S, Peruzzi M, Soubeyrand S, Pioz M, Pélissier M, Crauser D, Le Conte Y, Alaux C (2017) Colony adaptive response to simulated heatwaves and consequences at the individual level in honey bees (Apis mellifera). Sci Rep 7:1–11

    Article  CAS  Google Scholar 

  • Callier V, Nijhout HF (2011) Control of body size by oxygen supply reveals sizedependent and size-independent mechanisms of molting and metamorphosis. Proc Natl Acad Sci 108(35):14664–14669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cane JH (1987) Estimation of bee size using intertegular span (Apoidea). J Kansas Entomol Soc 145–147

  • Carrington LB, Armijos MV, Lambrechts L, Barker CM, Scott TW (2013) Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits. PLoS ONE 8:e58824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colinet H, Sinclair BJ, Vernon P, Renault D (2015) Insects in fluctuating thermal environments. Annu Rev Entomol 60:123–140

    Article  CAS  PubMed  Google Scholar 

  • Collins AM, Pettis JS (2013) Correlation of queen size and spermathecal contents and effects of miticide exposure during development. Apidologie 44:351–356

    Article  CAS  Google Scholar 

  • Couvillon MJ, Hughes WO, Perez-Sato JA, Martin SJ, Roy GG, Ratnieks FL (2010) Sexual selection in honey bees: colony variation and the importance of size in male mating success. Behav Ecol 21:520–525

    Article  Google Scholar 

  • Danks HV (2004) The roles of insect cocoons in cold conditions. Eur J Entomol 101:433–438.

    Article  Google Scholar 

  • De Almeida GF (2008) Fatores que interferem no comportamento enxameatório de abelhas africanizadas. Tesis doctoral. Facultad de Filosofía y Letras de Ribeirão Preto. Universidad de São Paulo, p 40

  • Debat V, Debelle A, Dworkin I (2009) Plasticity, canalization, and developmental stability of the Drosophila wing: joint effects of mutations and developmental temperature. Evolution 63:2864–2876

    Article  PubMed  Google Scholar 

  • Dedej S, Hartfelder K, Aumeier P, Rosenkranz P, Engels W (1998) Caste determination is a sequential process: effect of larval age at grafting on ovariole number, hind leg size and cephalic volatiles in the honey bee (Apis mellifera carnica). J Apicul Res 37:183–190

    Article  Google Scholar 

  • Delpuech JM, Moreteau B, Chiche J, Pla E, Vouidibio J, David JR (1995) Phenotypic plasticity and reaction norms in temperate and tropical populations of Drosophila melanogaster: ovarian size and developmental temperature. Evolution 49:670–675

    PubMed  Google Scholar 

  • Dodologlu A, Emsen B, Gene F (2004) Comparison of some characteristics of queen honey bees (Apis mellifera L.) reared by using Doolittle method and natural queen cells. J Appl Anim Res 26(2):113–115

    Article  Google Scholar 

  • Eickwort KR (1969) Differential variation of males and females in Polistes exclamens. Evolution 23:391–405

    Article  PubMed  Google Scholar 

  • Fleming JM, Carter AW, Sheldon KS (2021) Dung beetles show metabolic plasticity as pupae and smaller adult body size in response to increased temperature mean and variance. J Insect Physiol 131:104215

    Article  Google Scholar 

  • Francoy TM, Wittmann D, Drauschke M, Müller S, Steinhage V, Bezerra-Laure MA, De Jong D, Gonçalves LS (2008) Identification of Africanized honey bees through wing morphometrics: two fast and efficient procedures. Apidologie 39:488–494

    Article  Google Scholar 

  • Friedli A, Williams GR, Bruckner S, Neumann P, Straub L (2020) The weakest link: Haploid honey bees are more susceptible to neonicotinoid insecticides. Chemosphere 242:125145

    Article  CAS  PubMed  Google Scholar 

  • Gauthier L, Ravallec M, Tournaire M, Cousserans F, Bergoin M, Dainat B, de Miranda JR (2011) Viruses associated with ovarian degeneration in Apis mellifera L. queens. PLoS ONE 6(1):e16217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grenier AM, Nardon P (1994) The genetic control of ovariole number in Sitophilus oryzae L. (Coleoptera, Curculionidae) is temperature sensitive. Genet Sel Evol 26:413–430

    Article  PubMed Central  Google Scholar 

  • Guler A, Alpay H (2005) Reproductive characteristics of some honey bee (Apis mellifera L.) genotypes. J Anim Vet Adv 4:864–870

    Google Scholar 

  • Hansen PJ (2009) Effects of heat stress on mammalian reproduction. Philos Trans R Soc Lond B 364:3341–3350

    Article  Google Scholar 

  • Heinrich B (1993) Hot-headed honey bees. The hot-blooded insects: strategies and mechanisms of thermoregulation. Springer, Heidelberg, pp 292–322

    Google Scholar 

  • Hedrick PW, Murray E (1983) Selection and measures of fitness. In: Ashburner M, Carson HL, Thompson JN (eds) The genetics and biology of Drosophila, vol 3. Academic Press, London, pp 61–104

    Google Scholar 

  • Hoffmann AA, Collins E, Woods R (2002) Wing shape and wing size changes as indicators of environmental stress in Helicoverpa punctigera (Lepidoptera: Noctuidae) moths: comparing shifts in means, variances, and asymmetries. Environ Entomol 31:965–971

    Article  Google Scholar 

  • Hopkins BK, Herr C, Sheppard WS (2012) Sequential generations of honey bee (Apis mellifera) queens produced using cryopreserved semen. Reprod Fertil Dev 24(8):1079–1083

    Article  PubMed  Google Scholar 

  • Human H, Brodschneider R, Dietemann V, Dively G, Ellis J, Forgren E, Fries I, Hatjina F, Hu F-L, Jaffé R, Jensen AB, Köler A, Magyar J, Özkyrym A, Pirk CWW, Rose R, Strauss U, Tanner G, Tarpy DR, Van Der Steen JJM, Vaudo A, Vejsnaes F, Wilde J, Williams GR, Zheng HQ (2013) Miscellaneous standard methods for Apis mellifera research. In: Dietemann V, Ellis JD, Neumann P (eds) The COLOSS BEEBOOK, Volume I: standard methods for Apis mellifera research. J. Apicul. Re., vol. 52, no. 4, pp 1–56

  • Jackson JT, Tarpy DR, Fahrbach SE (2011) Histological estimates of ovariole number in honey bee queens, Apis mellifera, reveal lack of correlation with other queen quality measures. J Insect Sci 11:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaffé R, Moritz RFA (2010) Mating flights select for symmetry in honey bee drones (Apis mellifera). Naturwissenschaften 97:337–343

    Article  PubMed  Google Scholar 

  • Jones JC, Oldroyd BP (2006) Nest thermoregulation in social insects. Adv Insect Physiol 33:153–191

    Article  Google Scholar 

  • Kahya Y, Gençer HV, Woyke J (2008) Weight at emergence of honey bee (Apis mellifera caucasica) queens and its effect on live weights at the pre and post mating periods. J Apicul Res 47:118–125

    Article  Google Scholar 

  • Kamakura M (2001) Royalactin induces queen differentiation in honey bees. Nature 473:478–483

    Article  Google Scholar 

  • Karan D, Moreteau B, David JR (1999) Growth temperature and reaction norms of morphometrical traits in a tropical drosophilid: Zaprionus indianus. Heredity 83:398–407

    Article  PubMed  Google Scholar 

  • Kern P, Cramp RL, Franklin CE (2015) Physiological responses of ectotherms to daily temperature variation. J Exp Biol 218(19):3068–3076

    PubMed  Google Scholar 

  • Kjaersgaard A, Pertoldi C, Loeschcke V, Blanckenhorn WU (2013) The effect of fluctuating temperatures during development on fitness-related traits of Scatophaga stercoraria (Diptera: Scathophagidae). Environ Entomol 42:1069–1078

    Article  PubMed  Google Scholar 

  • Klingenberg CP, McIntyre GS (1998) Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution 52:1363–1375

    Article  PubMed  Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357

    Article  PubMed  Google Scholar 

  • Klingenberg CP (2010) Evolution and development of shape: integrating quantitative approaches. Nat Rev Genet 11(9):623–635

    Article  CAS  PubMed  Google Scholar 

  • Koeniger G, Koeniger N, Tingek S, Phiancharoen M (2005) Variance in spermatozoa number among Apis dorsata drones and among Apis mellifera drones. Apidologie 36:279–284

    Article  Google Scholar 

  • Kovačić M, Puškadija Z, Spitzmuller IŠ, Kranjac D (2016) Number of spermatozoa in spermatheca of honey bee (Apis mellifera carnica) queens 0 and 1 year old reared in the conditions of continental Croatia. In: 9th international scientific/professional conference, pp 257–260

  • Kramarz P, Małek D, Naumiec K, Zając K, Drobniak SM (2016) Response of development and body mass to daily temperature fluctuations: a study on Tribolium castaneum. Evol Biol 43:356–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laidlaw HH, Page RE (1997) Queen rearing and bee breeding. Wicwas Press, Kalamazoo

    Google Scholar 

  • Lens LUC, Van Dongen S, Kark S, Matthysen E (2002) Fluctuating asymmetry as an indicator of fitness: can we bridge the gap between studies? Biol Rev 77:27–38

    Article  PubMed  Google Scholar 

  • Lin H, Winston ML (1998) The role of nutrition and temperature in the ovarian development of the worker honey bee (Apis mellifera). Can Entomol 130:883–891

    Article  Google Scholar 

  • Liu X, Jiang C, Chen Y, Shi F, Lai C, Shen L (2020) Major royal jelly proteins accelerate onset of puberty and promote ovarian follicular development in immature female mice. Food Sci Hum Wellness 9:338–345

    Article  Google Scholar 

  • Magaña-Magaña MA, Tavera-Cortés ME, Salazar-Barrientos LL, SanginésGarcía JR (2016) Productividad de la apicultura en México y su impacto sobre la rentabilidad. Rev Mex Cienc Agric 7:1103–1115

    Google Scholar 

  • McAfee A, Chapman A, Higo H, Underwood R, Milone J, Foster LJ, Guarna MM, Tarpy DR, Pettis JS (2020) Vulnerability of honey bee queens to heat-induced loss of fertility. Nat Sustain 3:367–376

    Article  Google Scholar 

  • Medina RG, Paxton RJ, De Luna E, Fleites-Ayil FA, Medina-Medina LAM, Quezada-Euán JJG (2018) Developmental stability, age at onset of foraging and longevity of Africanized honey bees (Apis mellifera L.) under heat stress (Hymenoptera: Apidae). J Therm Biol 74:214–225

    Article  PubMed  Google Scholar 

  • Medina RG, Paxton RJ, Hernández-Sotomayor ST, Pech-Jiménez C, Medina-Medina LA, Quezada-Euán JJG (2020) Heat stress during development affects immunocompetence in workers, queens and drones of Africanized honey bees (Apis mellifera L.) (Hymenoptera: Apidae). J Therm Biol 89:102541

    Article  CAS  PubMed  Google Scholar 

  • Mora C, Dousset B, Caldwell IR, Powell FE, Geronimo RC, Bielecki CR, Counsell CCW, Dietrich BS, Johnston ET, Louis ET, Lucas MP, McKenzie MM, Shea AG, Tseng H, Giambelluca TW, Leon LR, Hawkins E, Trauernicht C (2017) Global risk of deadly heat. Nat Clim Change 7:501–506

    Article  Google Scholar 

  • O’Donnell S, Beshers SN (2004) The role of male disease susceptibility in the evolution of haplodiploid insect societies. Proc Soc Lond B Biol 271(1542):979–983

    Article  Google Scholar 

  • Oliver R (2021) The Honey Bee Queen, Honey Bee Medicine for the Veterinary Practitioner, pp 55–71

  • Owen RE (1989) Differential size variation of male and female bumblebees. J Heredity 80:39–43

    Article  Google Scholar 

  • Poot-Baez V, Medina-Hernández R, Medina-Peralta S, Quezada-Euán JJG (2019) Intranidal temperature and body size of Africanized honey bees under heatwaves (Hymenoptera: Apidae). Apidologie 51:382–390

    Article  Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Rhodes JW, Harden S, Spooner-Hart R, Anderson DL, Wheen G (2011) Effects of age, season and genetics on semen and sperm production in Apis mellifera drones. Apidologie 42:29–38

    Article  Google Scholar 

  • Rinehart JP, Yocum GD, Denlinger DL (2000) Thermotolerance and rapid cold hardening ameliorate the negative effects of brief exposures to high or low temperatures on fecundity in the flesh fly, Sarcophaga crassipalpis. Physiol Entomol 25:330–336

    Article  Google Scholar 

  • Rohlf F (2008) TPSdig, Version 2.12. Stony Brook, NY

  • Sales K, Vasudeva R, Dickinson ME, Godwin JL, Lumley AJ, Michalczyk ŁH, l, Thomas P., Franco A., Gage M. J. (2018) Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nat Commun 9:1–11

    Article  CAS  Google Scholar 

  • Schlüns H, Schlüns EA, Van Praagh J, Moritz RF (2003) Sperm numbers in drone honey bees (Apis mellifera) depend on body size. Apidologie 34:577–584

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slater GP, Smith NM, Harpur BA (2021) Prospects in connecting genetic variation to variation in fertility in male bees. Genes 12(8):1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Southwick EE, Heldmaier G (1987) Temperature control in honey bee colonies. Bioscience 37(6):395–399

    Article  Google Scholar 

  • Stürup M, Baer-Imhoof B, Nash DR, Boomsma JJ, Baer B (2013) When every sperm counts: factors affecting male fertility in the honey bee Apis mellifera. Behav Ecol 24:1192–1198

    Article  Google Scholar 

  • Sylvester HA, Rinderer TE (1987) Fast Africanized bee identification system (FABIS) manual. Am Bee J 127(7):511–516

    Google Scholar 

  • Tarpy DR, Delaney DA, Seeley TD (2015) Mating frequencies of honey bee queens (Apis mellifera L.) in a population of feral colonies in the northeastern United States. PLoS ONE 10(3):e0118734

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarpy DR, Keller JJ, Caren JR, Delaney DA (2011) Experimentally induced variation in the physical reproductive potential and mating success in honey bee queens. Insect Soc 58:569–574

    Article  Google Scholar 

  • Tarpy DR, Keller JJ, Caren JR, Delaney DA (2012) Assessing the mating ‘health’ of commercial honey bee queens. J Econ Entomol 105(1):20–25

    Article  PubMed  Google Scholar 

  • Vance JT, Roberts SP (2014) The effects of artificial wing wear on the flight capacity of the honey bee Apis mellifera. J Insect Physiol 65:27–36

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank CONACYT-México for a Ph.D. scholarship to RMM. We also acknowledge Luis Enrique Jasso Canto and Ph.D. Mario Duran Castillo for advices in Spanish/English translation.

Funding

This work was supported by the project “Cambio climático y polinizadores: Efecto del incremento térmico sobre la estabilidad en el desarrollo e indicadores de aptitud biológica en abejas tropicales de México (HYMENOPTERA:APIDAE)” (CONACYT CB-237532) to JJGQE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Medina.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina, R.G., Paxton, R.J., Arjona-Torres, M. et al. Effects of simulated tropical heat waves during development on the morphological and reproductive traits of Africanized honey bee. Insect. Soc. 70, 327–338 (2023). https://doi.org/10.1007/s00040-023-00927-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-023-00927-2

Keywords

Navigation