Skip to main content
Log in

Mite–termite interaction: does termite mortality mediate mite density?

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

It has been claimed that termitophile astigmatid mites reach large population sizes in weak termite colonies, but it is still unclear if the mites are the cause of the colony weakness or if they take some advantage of it. This study addresses this question by evaluating the size of the mite Australhypopus sp. population in colonies of the termite Cornitermes cumulans in the laboratory for 15 days. We tested whether mite population growth is dependent on termite mortality, in addition to making observations about the mite life cycle and its relationship with the termite host. Our results suggest that Australhypopus sp. does not decrease the mean lifetime of the hosts, although they depend on the death of the termite to complete their developmental cycle. These results indicate that termite mortality favors the increase of Australhypopus sp. population, perhaps because this mite feeds on termite corpses to complete its life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available on the digital repository Zenodo https://doi.org/10.5281/zenodo.7015193

References

  • Baumann J, Ferragut F (2019) Description and observations on morphology and biology of Imparipes clementis sp. nov., a new termite associated scutacarid mite species (Acari, Heterostigmatina: Scutacaridae Insecta Isoptera: Rhinotermitidae). Syst Appl Acarol. 24(2):303. https://doi.org/10.11158/saa.24.2.12

    Article  Google Scholar 

  • Becker G (1969). In: Krishna K, Weesner FM (eds) Rearing of termites and testing methods used in the laboratory. Academic Press, New York, pp 351–385

    Google Scholar 

  • Campbell KU, Klompen H, Crist TO (2012) The diversity and host specificity of mites associated with ants: the roles of ecological and life history traits of ant hosts. Insectes Soc 60(1):31–41. https://doi.org/10.1007/s00040-012-0262-6

    Article  Google Scholar 

  • Castiblanco J, Lima BSA, de Carvalho YC, Clemente LO, Pisno RM, DeSouza O (2022) Mate finding in a mimetic termitophile amidst its host termites. Ethology 128(3):223–231. https://doi.org/10.1111/eth.13259

    Article  Google Scholar 

  • Chen Y, Zhang L, Zhang S, Liu B, Zeng W, Li Z (2022) The mite Acarus farris inducing defensive behaviors and reducing fitness of termite Coptotermes formosanus: implications for phoresy as a precursor to parasitism. BMC Ecol Evol. https://doi.org/10.1186/s12862-022-02036-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa C, Vanin SA (2010) Coleoptera Larval Fauna associated with termite nests (isoptera) with emphasis on the bioluminescent termite nests from central Brazil. Psyche: A J Entomol. https://doi.org/10.1155/2010/723947

    Article  Google Scholar 

  • Costa DA, de Carvalho RA, de Lima Filho GF, Brandão D (2009) Inquilines and Invertebrate Fauna associated with termite nests of Cornitermes cumulans (Isoptera, Termitidae) in the Emas national park, Mineiros, Goiás. Brazil Sociobiology 53(2B):443–453

    Google Scholar 

  • Crawley MJ (2012) The R book. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  • Cruz JS, Cristaldo PF, Sacramento JJM, da Rocha Cruz ML, Ferreira DV, Araujo APA (2018) Survivorship and walking behavior of Inquilinitermes microcerus (Termitidae: Termitinae) in contact with host workers and walls from host nest. Sociobiology 65(1):31–37

    Article  Google Scholar 

  • Cumming MS (1996) Behavioural and ecological aspects of nuptial flights of the termitophilous phorids Termitophilomyia zimbraunsi and Mesopathusa modesta (Diptera: Phoridae) in Zimbabwe. J Zool 239(4):675–690. https://doi.org/10.1111/j.1469-7998.1996.tb05470.x

    Article  Google Scholar 

  • Cutcher JJ, Woodring JP (1969) Environmental Regulation of Hypopialapolysis of the Mite. Caloglyphus boharti J Insect Physiol 15:2045–2057

    Article  CAS  Google Scholar 

  • da Cunha HF, Lima JS, de Souza LF, dos Santos LGA, Nabout JC (2015) No morphometric distinction between the host Constrictotermes cyphergaster (Silvestri)(Isoptera: Termitidae, Nasutitermitinae) and its obligatory termitophile Corotoca melantho Schiødte (Coleoptera: Staphylinidae). Sociobiology 62(1):65–69

    Article  Google Scholar 

  • de Carvalho YC, Clemente LO, Guimarães MP, DeSouza O (2018) Suitable light regimes for filming termites in laboratory bioassays. Sociobiology 65(1):108–111

    Article  Google Scholar 

  • da Silva LHB, Costa-Leonardo AM (2018) Behavioural repertoire of termites in corpse management: a comparison between one-piece and multiple-pieces nesting termite species. Behav Proc 157:431–437

    Article  Google Scholar 

  • Eickwort GC (1990) Associations of mites with social insects. Annu Rev Entomol 35:469–488

    Article  Google Scholar 

  • Fain A, Friend JA (1984) Two new acarid hypopi (Acari, Astigmata) from the faeces of the numbat, Myrmecobius fasciatus Waterhouse (Marsupialia, Myrmecobiidae). Rec West Aust Mus 11(2):101–108

    Google Scholar 

  • Ferreira DV, Cruz JS, Sacramento JJM, Rocha MLC, Cristaldo PF, Araújo APA (2019) Effect of temperature and substrate moisture on group survival of Constrictotermes sp. (Isoptera: Termitidae) under laboratory conditions. Revista Brasileira de Entomologia 63(1):9–11. https://doi.org/10.1016/j.rbe.2018.12.004

    Article  Google Scholar 

  • Haifig I,Costa-Leonardo A M. (2008). Record of mimetism between mites and eggs of the neotropical termite Cornitermes cumulans (Isoptera: Termitidae). Sociobiology, 251–256.

  • Hugo H, Hermes MG, Garcete-Barrett BR, Couzin ID (2020) First evidence of wasp brood development inside active nests of a termite with the description of a previously unknown potter wasp species. Ecol Evol 10(23):12663–12674. https://doi.org/10.1002/ece3.6872

    Article  PubMed  PubMed Central  Google Scholar 

  • Kistner, D. H. (1969) Biology of Termitophiles. In: (K. Krishna & F. M. Weesner (eds.). Academic Press NewYork London, Elsevie, pp. 525–557

  • Korb, J. (2011) Termite Mound Architecture,from Function to Construction .In: (D. E. Bignell, Y. Roisin, & N. Lo (eds.) Springer Dordrecht Heidelberg, London New York, Pp. 349–373

  • Krantz GW, Walter DE (2009) A manual of acarology, 3rd edn. Texas Tech University Press, USA, p 807

    Google Scholar 

  • Kuo JS, Nesbitt HHJ (1970) Termination of the hypopial stage in Caloglyphus mycophagus (Mégnin) (Acarina: Acaridae). Can J Zool 48:529–537

    Article  Google Scholar 

  • Lindquist EE (1975) Associations between mites and other arthropods in forest floor habitats. Can Entomol 107(4):425–437. https://doi.org/10.4039/ent107425-4

    Article  Google Scholar 

  • López-Riquelme GO, Fanjul-Moles ML (2013) The funeral ways of social insects. social strategies for corpse disposal. Trends Entomol 9:71–129

    Google Scholar 

  • Moreira IE, Pires-Silva CM, Ribeiro KG, Zilberman B, Bezerra-Gusmão MA (2019) Run to the nest: a parody on the Iron Maiden song by Corotoca spp. (Coleoptera, Staphylinidae). Papéis Avulsos de Zoologia. https://doi.org/10.11606/1807-0205/2019.59.18

    Article  Google Scholar 

  • Myles TG (2002) Observations on Mites (Acari) associated with the Eastern subterranean termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology 39(2):277–280

    Google Scholar 

  • O’Connor BM (1982) Evolutionary ecology of Astigmatid Mites. Annu Rev Entomol 27(1):385–409. https://doi.org/10.1146/annurev.en.27.010182.002125

    Article  Google Scholar 

  • O’Connor BM (2009) Cohort astigmatina. A Manual Acarol 3:565–657

    Google Scholar 

  • Philipsen WJ, Coppel HC (1977) Histiostoma formosana sp.n. associated with the Formosan subterranean termite, Coptotermes formosanus Shiraki, (Acarina: Anoetidae-Isoptera: Rhinotermitidae). J Kansas Entomol Soc 50(4):496–502

    Google Scholar 

  • Phillipsen WJ, Coppel HC (1977) Acotyledon formosani sp. n. Associated with the formosan subterranean termite, Coptotermes formosanus Shiraki (Acarina: Acaridae-Isoptera: Rhinotermitidae). J Kansas Entomol Soc 50(3):399–409

    Google Scholar 

  • Phillipsen WJ, Coppel HC (1978) Uroobovella formosana Sp. N. Associated with the formosan subterranean termite, Coptotermes Formosanus Shiraki (Acarina: Uropodidae: Isoptera: Rhinotermitidae. J Kansas Entomol Soc 51(1):22–27

    Google Scholar 

  • Pisno RM, Salazar K, Lino-Neto J, Serrão JE, DeSouza O (2018) Termitariophily: expanding the concept of termitophily in a physogastric rove beetle (Coleoptera: Staphylinidae). Ecolo Entomol 44(3):305–314. https://doi.org/10.1111/een.12709

    Article  Google Scholar 

  • R Core Team (2021) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria

  • Redford KH (1984) The Termitaria of Cornitermes cumulans (Isoptera, Termitidae) and their role in determining a potential keystone species. Biotropica 16(2):112. https://doi.org/10.2307/2387842

    Article  Google Scholar 

  • Rosa CS, Cristaldo PF, Florencio DF, Marins A, Lima ER, DeSouza O (2018) On the chemical disguise of a physogastric termitophilous rove beetle. Sociobiology 65(1):38–47

    Article  Google Scholar 

  • Seevers CH (1957) A monograph on the termitophilous Staphylinidae (Coleoptera). Fieldiana Zool. 40:1–334

    Google Scholar 

  • Wang C, Powell JE, O’Connor BM (2002) Mites and Nematodes associated with three subterranean termite species (Isoptera: Rhinotermitidae). Florida Entomol 85(3):499–506. https://doi.org/10.1653/0015-4040(2002)085[0499:manawt]2.0.co;2

    Article  Google Scholar 

  • Williams RMC (1959) Flight and colony foundation in two Cubitermes species (Isoptera: Termitidae). Insectes Soc 6(2):203–218

    Article  Google Scholar 

  • Woodring JP (1973) New Anoetid Mites associated with halictid bees (Acarina: Anoetidae Hymenoptera:Halictidae). J Kansas Entomol Soc 46(3):310–327

    Google Scholar 

Download references

Acknowledgements

We are thankful to Arthur de M. Pisno for his assistance with data collection and experimentation; Marina Ferraz C. Barbosa for helping with mite identification; Og DeSouza for providing the laboratory in which the tests were carried out; Angelo Pallini for the availability of the laboratory and devices for mite identification; Alessandra Marins, Flavia Moura, Leonardo Turchen, Lirio Cosme, and the anonymous reviewers for the suggestions that enriched this work; and to Enedina Sacramento for English editing. This study was carried out using free software, especially, but not restricted to, r + rstudio, LAtex + Kyle, ubuntu, inkscape, libreoffice, jabref, firefox, custom-bib and yed, as well as the free searching sites Google Scholar and Sci-hub, whose authors deserve our profound gratitude.

Funding

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior,88887.372070/2019-00,Raul Pisno Conselho Nacional de Desenvolvimento Científico e Tecnológico, 303243/2022-8 and Fundação de Amparo à Pesquisa do Estado de Minas Gerais, APQ-02367-18, José Eduardo Serrão.

Author information

Authors and Affiliations

Authors

Contributions

RMP and DVF conceived the hypothesis. RMP and DVF collected the nests. RMP and DFV planned the experiments. RMP, DFV and JJF conducted the experiments. RMP, DVF and JES wrote the text. JES raised the financial resources. All authors reviewed the manuscript.

Corresponding author

Correspondence to R. M. Pisno.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisno, R.M., Ferreira, D.V., Ferla, J.J. et al. Mite–termite interaction: does termite mortality mediate mite density?. Insect. Soc. 70, 243–249 (2023). https://doi.org/10.1007/s00040-023-00913-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-023-00913-8

Keywords

Navigation