Skip to main content
Log in

Colony fitness and garden growth in the asexual fungus-growing ant Mycocepurus smithii (Attini, Formicidae)

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Nest-founding in the fungus-growing ant Mycocepurus smithii is typically by single queens (monogyny) and colonies transition to multiple queens (polygyny) as they grow larger. Here, we study the transition from monogyny to polygyny of M. smithii under lab conditions. We hypothesize that the worker-to-queen ratio affects colony growth, fungus-garden growth, and colony survival. Monogyne colonies with small gardens (0.1 g) had greater garden growth than polygyne colonies, suggesting that monogyny may be the superior strategy for small colonies after initial nest establishment. In monogyne colonies with small gardens and either 30, 60, or 90 workers, colonies with 60 workers produced the largest gardens, suggesting that an intermediate worker-to-queen ratio is optimal for monogyne colonies with small gardens. For monogyne colonies with larger gardens (0.45 g) and with either 6, 18, 60, or 90 workers, colonies with 60 or 90 workers had significantly greater garden growth than those with 6 or 18 workers. New daughter queens were produced only by colonies with a worker-to-queen ratio of 60 or 90, suggesting that only colonies with sufficient worker numbers and garden growth are stimulated to produce new queens. A single queen lays only 1.12 ± 0.06 (SE) eggs within 24 h, therefore, limiting growth of monogyne colonies. The transition from monogyny to polygyny through the addition of supernumary queens, as well as a worker-to-queen ratio of around 60, are, therefore, critical for colony growth and reproduction in M. smithii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams ES, Tschinkel WR (1995) Effects of foundress number on brood raids and queen survival in the fire ant Solenopsis invicta. Behav Ecol Sociobiol 37:233–242

    Google Scholar 

  • Bartz SH, Hölldobler B (1982) Colony founding in Myrmecocystus mimicus Wheeler (Hymenoptera: Formicidae) and the evolution of foundress associations. Behav Ecol Sociobiol 10:137–147

    Google Scholar 

  • Berger B, Poiani SB, Roat TC, Cruz-Landim C (2015) Ovary development in honeybee (Apis mellifera L.) workers under CO2 narcosis, caged outside of the colony. J Apic Sci 59:51–58

    CAS  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    PubMed  Google Scholar 

  • Boulay R, Hefetz A, Cerdá X, Devers S, Francke W, Twele R, Lenoir A (2007) Production of sexuals in a fission-performing ant: dual effects of queen pheromones and colony size. Behav Ecol Sociobiol 61:1531–1541

    Google Scholar 

  • Boulay R, Cerdá X, Fertin A, Ichinose K, Lenoir A (2009) Brood development into sexual females depends on the presence of a queen but not on temperature in an ant dispersing by colony fission, Aphaenogaster senilis. Ecol Entomol 34:595–602

    Google Scholar 

  • Butlin R (2002) The costs and benefits of sex: new insights from old asexual lineages. Nat Rev Genet 3:311–317

    CAS  PubMed  Google Scholar 

  • Cahan S, Julian GE (1999) Fitness consequences of cooperative colony founding in the desert leaf-cutter ant Acromyrmex versicolor. Behav Ecol 10:585–591

    Google Scholar 

  • Chiu CI, Neoh KB, Li HF (2018) Colony-founding success of pleometrosis in a fungus-growing termite Odontotermes formosanus. Behav Ecol Sociobiol 72:13

    Google Scholar 

  • Endler A, Leibig J, Schmitt T, Parker JE, Jones GR, Schreier P, Hölldobler B (2004) Surface hydrocarbons of queen eggs regulate worker reproduction in a social insect. Proc Natl Acad Sci USA 101:2945–2950

    CAS  PubMed  Google Scholar 

  • Fang CC (2019) Embryogenesis, trophic eggs, and early colony growth of myrmicine ants. PhD dissertation, The University of Texas at Austin

  • Fernández-Marín H, Zimmerman JK, Wcislo WT (2003) Nest-founding in Acromyrmex octospinosus (Hymenoptera, Formicidae, Attini): demography and putative prophylactic behaviors. Insect Soc 50:304–308

    Google Scholar 

  • Fernández-Marín H, Zimmerman JK, Wcislo WT (2004) Ecological traits and evolutionary sequence of nest establishment in fungus-growing ants (Hymenoptera, Formicidae, Attini). Biol J Linn Soc 81:39–48

    Google Scholar 

  • Fernández-Marín H, Zimmerman JK, Wcislo WT, Rehner SA (2005) Colony foundation, nest architecture and demography of a basal fungus-growing ant, Mycocepurus smithii (Hymenoptera, Formicidae). J Nat Hist 39:1735–1743

    Google Scholar 

  • Grbic M, Rivers D, Strand MR (1997) Caste formation in the polyembryonic wasp Copidosoma floridanum (Hymenoptera: Encyrtidae): in vivo and in vitro analysis. J Insect Physiol 43:553–565

    CAS  PubMed  Google Scholar 

  • Himler AG, Caldera EJ, Baer BC, Fernández-Marín H, Mueller UG (2009) No sex in fungus-farming ants or their crops. Proc R Soc B 276:2611–2616

    PubMed  Google Scholar 

  • Hölldobler B, Wilson EO (1977) The number of queens: an important trait in ant evolution. Naturwissenschaften 64:8–15

    Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Boston

    Google Scholar 

  • Hughes WHO, Boomsma JJ (2004) Genetic diversity and disease resistance in leaf-cutting ant societies. Evolution 58:1251–1260

    PubMed  Google Scholar 

  • Johnson RA (2004) Colony founding by pleometrosis in the semiclaustral seed-harvester ant Pogonomyrmex californicus (Hymenoptera: Formicidae). Anim Behav 68:1189–1200

    Google Scholar 

  • Julian GE, Fewell JH (2004) Genetic variation and task specialization in the desert leaf-cutter ant, Acromyrmex versicolor. Anim Behav 68:1–8

    Google Scholar 

  • Kardish MR, Mueller UG, Amador-Vargas S, Dietrich EI, Ma R, Barrett B, Fang CC (2015) Blind trust in unblinded observation in ecology, evolution, and behavior. Front Ecol Evol 3:51

    Google Scholar 

  • Keller L (1991) Queen number, mode of colony founding, and queen reproductive success in ants (Hymenoptera Formicidae). Ethol Ecol Evol 3:307–316

    Google Scholar 

  • Kellner K, Fernández-Marín H, Ishak HD, Sen R, Linksvayer TA, Mueller UG (2013) Co-evolutionary patterns and diversification of ant-fungus associations in the asexual fungus-farming ant Mycocepurus smithii in Panama. J Evol Biol 26:1353–1362

    CAS  PubMed  Google Scholar 

  • Kellner K, Ishak HD, Linksvayer TA, Mueller UG (2015) Bacterial community composition and diversity in an ancestral ant fungus symbiosis. FEMS Microbiol Ecol 91:fiv073

    PubMed  Google Scholar 

  • Kellner K, Kardish MR, Seal JN, Linksvayer TA, Mueller UG (2018) Symbiont-mediated host-parasite dynamics in a fungus-gardening ant. Microb Ecol 76:530–543

    PubMed  Google Scholar 

  • Kempf WW (1963) A review of the ant genus Mycocepurus Forel, 1983 (Hymenoptera: Formicidae). Stud Entomol 6:417–432

    Google Scholar 

  • Khila A, Abouheif E (2008) Reproductive constraint is a developmental mechanism that maintains social harmony in advanced ant societies. Proc Natl Acad Sci USA 105:17884–17889

    CAS  PubMed  Google Scholar 

  • Khila A, Abouheif E (2010) Evaluating the role of reproductive constraints in ant social evolution. Philo Trans R Soc Lond B Biol Sci 365:617–630

    Google Scholar 

  • Koywiwattrakul P, Thompson GJ, Sitthipraneed S, Oldroyd BP, Maleszka R (2005) Effects of carbon dioxide narcosis on ovary activation and gene expression in worker honeybees, Apis mellifera. J Insect Sci 5:36

    PubMed  PubMed Central  Google Scholar 

  • Mackay WP, Maes JM, Fernández PR, Luna G (2004) The ants of North and Central America: the genus Mycocepurus (Hymenoptera: Formicidae). J Insect Sci 4:27

    PubMed  PubMed Central  Google Scholar 

  • Marti HE, Carlson AL, Brown BV, Mueller UG (2015) Foundress queen mortality and early colony growth of the leafcutter ant, Atta texana (Formicidae, Hymenoptera). Insectes Soc 62:357–363

    Google Scholar 

  • Mehdiabadi NJ, Hughes B, Mueller UG (2006) Cooperation, conflict, and coevolution in the attine ant-fungus symbiosis. Behav Ecol 17:291–296

    Google Scholar 

  • Meirelles LA, McFrederick QS, Rodrigues A, Mantovani JD, de Melo Rodovalho C, Ferreira H, Bacci M, Mueller UG (2016) Bacterial microbiomes from vertically-transmitted fungal inocula of the leaf-cutting ant Atta texana. Environ Microbiol Rep 8:630–640

    PubMed  Google Scholar 

  • Mueller UG, Rehner SA, Schultz TR (1998) The evolution of agriculture in ants. Science 281:2034–2038

    CAS  PubMed  Google Scholar 

  • Mueller UG, Schultz TR, Currie CR, Adams RMM, Malloch D (2001) The origin of the attine ant-fungus mutualism. Q Rev Biol 76:169–197

    CAS  PubMed  Google Scholar 

  • Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press, Princeton

    Google Scholar 

  • Overson R, Gadau J, Clark RM, Pratt SC, Fewell JH (2014) Behavioral transitions with the evolution of cooperative nest founding by harvester ant queens. Behav Ecol Sociobiol 68:21–30

    Google Scholar 

  • Porter SD, Tschinkel WR (1986) Adaptive value of nanitic workers in newly founded red imported fire ant colonies (Hymenoptera: Formicidae). Ann Entomol Soc Am 79:723–726

    Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed 1 Mar 2019

  • Rabeling C (2004) Nester, Streueintrag und symbiontische Pilze amazonischer Ameisen der Gruppe ursprünglicher Attini. Master of Science Thesis, University of Tübingen

  • Rabeling C, Kronauer DJC (2013) Thelytokous parthenogenesis in eusocial Hymenoptera. Annu Rev Entomol 58:273–292

    CAS  PubMed  Google Scholar 

  • Rabeling C, Lino-Neto J, Cappellari SC, Dos-Santos IA, Mueller UG, Bacci M Jr (2009) Thelytokous parthenogenesis in the fungus-gardening ant Mycocepurus smithii (Hymenoptera: Formicidae). PLoS One 4:e6781

    PubMed  PubMed Central  Google Scholar 

  • Rabeling C, Gonzales O, Schultz TR, Bacci M Jr, Garcia MVB, Verhaagh M, Ishak HD, Mueller UG (2011) Cryptic sexual populations account for genetic diversity and ecological success in a widely distributed, asexual fungus-growing ant. Proc Natl Acad Sci USA 108:12366–12371

    CAS  PubMed  Google Scholar 

  • Ratnieks FLW, Reeve HK (1992) Conflict in single-queen Hymenopteran societies: the structure of conflict and processes that reduce conflict in advanced eusocial species. J Theor Biol 158:33–65

    Google Scholar 

  • Rice WR (2002) Experimental tests of the adaptive significance of sexual recombination. Nat Rev Genet 3:241–251

    CAS  PubMed  Google Scholar 

  • Richards MH, Packer L (1994) Trophic aspects of caste determination in Halictus ligatus, a primitively eusocial sweat bee. Behav Ecol Sociobiol 34:385–391

    Google Scholar 

  • Rissing SW, Pollock GB (1991) An experimental analysis of pleometrotic advantage in the desert seed-harvester ant Messor pergandei (Hymenoptera; Formicidae). Insectes Soc 38:205–211

    Google Scholar 

  • Ruel C, Cerdá X, Boulay R (2012) Behaviour-mediated group size effect constrains reproductive decisions in a social insect. Anim Behav 84:853–860

    Google Scholar 

  • Schmidt AM, Linksvayer TA, Boomsma JJ, Pedersen JS (2011) Queen–worker caste ratio depends on colony size in the pharaoh ant (Monomorium pharaonis). Insectes Soc 58:139–144

    Google Scholar 

  • Seal JN, Tschinkel WR (2007) Complexity in an obligate mutualism: do fungus-gardening ants know what makes their garden grow? Behav Ecol Sociobiol 61:1151–1160

    Google Scholar 

  • Seal JN, Tschinkel WR (2008) Food limitation in the fungus-gardening ant, Trachymyrmex septentrionalis. Ecol Entomol 33:597–607

    Google Scholar 

  • Shik JZ, Santos J, Seal JN, Kay A, Mueller UG, Kaspari M (2014) Metabolism and the rise of fungus cultivation by ants. Am Nat 184:364–373

    PubMed  Google Scholar 

  • Sosa-Calvo J, Jesovnik A, Okonski E, Schultz TR (2015) Locating, collecting, and maintaining colonies of fungus-farming ants (Hymenoptera: Formicidae: Myrmicinae: Attini). Sociobiology 62:300–320

    Google Scholar 

  • Tschinkel WR, Howard DF (1983) Colony founding by pleometrosis in the fire ant, Solenopsis invicta. Behav Ecol Sociobiol 12:103–113

    Google Scholar 

  • Warner MR, Kovaka K, Linksvayer TA (2016) Late-instar ant worker larvae play a prominent role in colony-level caste regulation. Insectes Soc 63:575–583

    Google Scholar 

  • Weber NA (1958) Evolution in fungus-growing ants. In: Proceedings of the tenth international congress of entomology, vol 2, pp 459–473

  • Weber NA (1966) Fungus-growing ants. Science 153:587–604

    CAS  PubMed  Google Scholar 

  • Weber NA (1982) Fungus ants. In: Hermann HR (ed) Social insects. Academic Press, New York, pp 255–363

    Google Scholar 

  • Wheeler W (1907) The fungus-growing ants of North America. Bull Am Mus Nat Hist 23:669–807

    Google Scholar 

  • Wheeler DE (1986) Developmental and physiological determinants of caste in social Hymenoptera: evolutionary implications. Am Nat 128:13–34

    Google Scholar 

  • Wheeler DE (1994) Nourishment in ants: patterns in individuals and societies. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview Press, Colorado, pp 245–278

    Google Scholar 

Download references

Acknowledgements

We thank Etzel Monique Garcia, Dong Joon Kim and Ryan Bailey for colony maintenance; David Stein, Alexander Wild, Johann Hofmann, Lawrence Gilbert, Arjuna Rajakumar, and Ehab Abouheif for comments on the experimental design. The study was funded by a Texas Ecolab award to CCF, National Science Foundation award DEB-1354666 to UGM, and the W. M. Wheeler Lost Pines Endowment from the University of Texas at Austin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-C. Fang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, CC., Chang, FH., Duong, P. et al. Colony fitness and garden growth in the asexual fungus-growing ant Mycocepurus smithii (Attini, Formicidae). Insect. Soc. 67, 35–49 (2020). https://doi.org/10.1007/s00040-019-00741-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-019-00741-9

Keywords

Navigation