Skip to main content
Log in

Effects of starvation on survival, cannibalism, body mass, and intestinal protozoan profile in the subterranean termite Reticulitermes lucifugus

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Scarcity or inadequate nutrition can affect biological and behavioural aspects of subterranean termites and their intestinal protozoan profile. The aim of this study was to investigate changes in survival, cannibalism, body mass, and protist community structure of Reticulitermes lucifugus Rossi subspecies “Sicily” following starvation to provide basic knowledge for the development of more specific studies on a possible survival strategy under stressful conditions. In nature, this termite consumes many food sources and its feeding activity is continuous during the year. In a 35-day laboratory experiment, groups of 50 termites (worker/soldier ratio 49:1) were subjected to two diets, starvation (no source of cellulose offered to the termites) and filter-paper feeding (as a control), kept for 35 days with 7-day intervals of inspection, and compared with termites freshly collected from a field colony on May 2017. Under starvation, termite survival decreased to 0% after 35 days for both workers and soldiers, whereas in the fed group (filter-paper diet) it was 83% for workers and 66% for soldiers. Cannibalism was on average 84% on dead workers, 1.7% on survivor workers, and 100% on dead soldiers. The body mass of workers decreased from 3.5 mg/worker (first day of the test) to 2.05 mg/worker (last day of the test). The community structure and abundance of the intestinal protozoa of workers changed in response to starvation. Starvation caused the loss of four, six, and two protist species after 7, 14, and 28 days, respectively, with only one species persisting after 28 days. In most inspection dates, results were significantly different from those of filter-paper-fed and field-collected groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Belitz LA, Waller DA (1998) Effect of temperature and termite starvation on phagocytosis by protozoan symbionts of the eastern subterranean termite Reticulitermes flavipes Kollar. Microb Ecol 36:75–180

    Google Scholar 

  • Borges FP, Gottardi B, Stuepp C, Larré AB, de Brum Vieira P, Tasca T, De Carli GA (2007) Morphological aspects of Monocercomonas sp. and investigation on probable pseudocysts occurrence. Parasitol Res 101:1503–1509

    PubMed  Google Scholar 

  • Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487

    CAS  Google Scholar 

  • Breznak JA, Switzer JM (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol 52:623–630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brugerolle G, Bordereau C (2006) Immunological and ultrastructural characterization of spirotrichonymphid flagellates from Reticulitermes grassei and R. flavipes (syn. R. santonensis), with special reference to Spirotrichonympha, Spironympha and Microjoenia. Org Divers Evol 6:109–123

    Google Scholar 

  • Brugerolle G, Radek R (2006) Symbiotic protozoa of termites. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates, soil biology, vol 6. Springer, Berlin, Heidelberg, pp 243–270

    Google Scholar 

  • Brune A, Dietrich C (2015) The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol 69:145–166

    CAS  PubMed  Google Scholar 

  • Brune A, Ohkuma M (2011) Role of termite gut microbiota in symbiotic digestion. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer Science+Business Media BV, London, New York, pp 439–475

    Google Scholar 

  • Buchli HR (1950) Recherche sur la fondation et le développement des nouvelles colonies chez le termite lucifuge (Reticulitermes lucifugus (Rossi). Physiologia Comparata et Oecologia 2:145–160

    Google Scholar 

  • Buchli HR (1956) Le cycle de developpement des castes chez Reticulitermes. Insectes Soc 3:395–401

    Google Scholar 

  • Buchli HR (1958) L’origine des castes et les potentialities ontogeniques des termites europeens du genre Reticulitermes Holmgren. Annales des Sciences Naturelles Zoologie et Biologie Animale 11:263–429

    Google Scholar 

  • Cleveland LR (1923) Symbiosis between termites and their intestinal protozoa. Proc Natl Acad Sci USA 9:424–428

    CAS  PubMed  Google Scholar 

  • Cleveland LR (1924) The physiological and symbiotic relationships between the intestinal protozoa of termites and their host, with special reference to Reticulitermes flavipes (Kollar). Biol Bull 46:203–223

    CAS  Google Scholar 

  • Cleveland LR (1925) The effects of oxygenation and starvation on the symbiosis between the termite, Termopsis, and its intestinal flagellates. Biol Bull 48:309–326

    CAS  Google Scholar 

  • Cook TJ, Gold RE (2000) Effects of different cellulose sources on the structure of the hindgut flagellate community in Reticulitermes virginicus (Isoptera: Rhinotermitidae). Sociobiology 35:119–130

    Google Scholar 

  • Cook SF, Scott KG (1933) The nutritional requirements of Zootermopsis (Termopsis) angusticollis. J Cell Comp Physiol 4:95–110

    CAS  Google Scholar 

  • Duarte S, Duarte M, Borges PAV, Nune L (2017) Dietary-driven variation effects on the symbiotic flagellate protist communities of the subterranean termite Reticulitermes grassei Clement. J Appl Entomol 141:300–307

    CAS  Google Scholar 

  • Esenther GR (1969) Termites in Wisconsin. Ann Entomol Soc Am 62:1274–1284

    Google Scholar 

  • Forschler BT, Henderson G (1995) Subterranean termite behavioral reaction to water and survival of inundation: implications for field, populations. Environ Entomol 24:1592–1597

    Google Scholar 

  • Ghesini S, Marini M (2012) New data on Reticulitermes urbis and Reticulitermes lucifugus in Italy: are they both native species? Bull Insectol 65:301–310

    Google Scholar 

  • Grassi B (1917) Flagellati viventi nei termiti. Memorie della Reale Accademia dei Lincei 5:331–394

    Google Scholar 

  • Grassi GB, Foa A (1911) Intorno ai protozoi dei termitidi. Rendiconti della Reale Accademia dei Lincei 20:725–741

    Google Scholar 

  • Grosovsky BDD, Margulis L (1982) Termite microbial communities. In: Burns RG, Slater JH (eds) Experimental microbial ecology, Ch. 30. Blackwell Scientific Publications, Oxford, pp 519–532

    Google Scholar 

  • Haverty MI, Howard RW (1979) Effects of insect regulators on subterranean termites: induction of differentiation, defaunation, and starvation. Ann Entomol Soc Am 72:503–508

    CAS  Google Scholar 

  • Hendee L (1934) Caste determination and differentiation with special reference to the genus Reticulitermes (Isoptera). J Morphol 56:267–293

    Google Scholar 

  • Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudo T (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71:6590–6599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Honigberg BM (1970) Protozoa associated with termites and their role in digestion. In: Krishna K, Weesner FM (eds) Biology of termites, vol 2. Academic Press, New York, London, pp 1–36

    Google Scholar 

  • Hu XP, Song D, Gao X (2011) Biological changes in the Eastern subterranean termite, Reticulitermes flavipes (Isoptera, Rhinotermitidae) and its protozoa profile following starvation. Insectes Soc 58:39–45

    Google Scholar 

  • Hungate RE (1943) Quantitative analysis on the cellulose fermentation by termite protozoa. Ann Entomol Soc Am 36:730–739

    CAS  Google Scholar 

  • Inoue T, Murashima K, Azuma J-I, Sugimoto A, Slaytor M (1997) Cellulose and xylan utilisation in the lower termite Reticulitermes speratus. J Insect Physiol 43:235–242

    CAS  PubMed  Google Scholar 

  • Kirby H (1924) Morphology and mitosis of Dinenympha fimbriata sp. nov. Univ Calif Publ Zool 26:199–221

    Google Scholar 

  • LaFage JP (1976) Nutritional biochemistry, bioenergetics, and nutritive value of the dry-wood termite, Marginitermes hubbardi (Banks). Dissertation, University of Arizona, Tucson

  • LaFage JP, Nutting WL (1978) Nutrient dynamics of termites. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, London, pp 165–232

    Google Scholar 

  • Lai PY, Tamashiro M, Fujii JK (1983) Abundance and distribution of the three species of symbiotic protozoa in the hindgut of Coptotermes formosanus (Isoptera: Rhinotermitidae). Proc Hawaii Entomol Soc 24:271–276

    Google Scholar 

  • Leidy J (1877) On the intestinal parasites of Termes flavipes. Proc Acad Nat Sci Phila 29:146–149

    Google Scholar 

  • Lo Pinto M, Varrica G, Agrò A (2016) Temporal variations in symbiotic hindgut protist community of the subterranean termite Reticulitermes lucifugus Rossi in Sicily. Insectes Soc 63:143–154

    Google Scholar 

  • Lo Pinto M, Varrica G, Agrò A (2017) Studies on Reticulitermes lucifugus Rossi (Isoptera: Rhinotermitidae): a review of associated hindgut flagellates and investigations on protist species of the Sicilian subspecies, R. lucifugus “Sicily”. J Entomol Zool Stud 5(4):1249–1256. https://doi.org/10.22271/j.ento

    Article  Google Scholar 

  • Luchetti A, Bergamaschi S, Marini M, Mantovani B (2004) Mitochondrial DNA analysis of native European Isoptera: a comparison between Reticulitermes (Rhinotermitidae) and Kalotermes (Kalotermitidae) colonies from Italy and Balkans. Redia J Zool 87:149–153

    Google Scholar 

  • Luchetti A, Velonà A, Mueller M (2013) Breeding systems and reproductive strategies in Italian Reticulitermes colonies (Isoptera: Rhinothermitidae). Insectes Soc 60:203–211

    Google Scholar 

  • Mannesmann R (1972) Relationship between different wood species as a termite food source and the reproduction of termite symbionts. J Appl Entomol 72:116–128

    Google Scholar 

  • Mannesmann R (1973) Comparison of twenty-one commercial wood species from North America in relation to feeding rates of the Formosan termite, Coptotermes formosanus Shiraki. Material und Organismen 8:107–120

    Google Scholar 

  • Mauldin JK, Smythe RV, Baxter CC (1972) Cellulose catabolism and lipid synthesis by the subterranean termite, Coptotermes formosanus. Insect Biochem 2:209–217

    CAS  Google Scholar 

  • Mauldin JK, Carter FL, Rich NM (1981) Protozoan populations of Reticulitermes flavipes (Kollar) exposed to heartwood blocks of 21 American species. Material und Organismen 16:15–28

    Google Scholar 

  • McMahan EA (1963) A study of termite feeding relationship, using radioisotopes. Ann Entomol Soc Am 56:74–82

    Google Scholar 

  • Moore BP (1969) Biochemical studies in termites. In: Krishna K, Weesner FM (eds) Biology of termites, vol 1. Academic Press, New York, London, pp 407–432

    Google Scholar 

  • Noda S, Kitade O, Inoue T, Kawai M, Kanuka M, Hiroshima K, Hongoh Y, Constantino R, Uys V, Zhong J, Kudo T, Ohkuma M (2007) Cospeciation in the triplex symbiosis of the termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts. Mol Ecol 16:1257–1266

    CAS  PubMed  Google Scholar 

  • Ohkuma M (2008) Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol 16:345–352

    CAS  PubMed  Google Scholar 

  • Ohkuma M, Brune A (2011) Diversity, structure, and evolution of the termite gut microbial community. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, Heidelberg, London, New York, pp 413–438

    Google Scholar 

  • Osbrink WLA, Lax A (2002) Effect of tolerance to insecticides on substrate penetration by Formosan subterranean termites (Isoptera: Rhinotermitidae). J Econ Entomol 95:989–1000

    CAS  PubMed  Google Scholar 

  • Powell WN (1928) On the morphology of Pyrsonympha with a description of three new species from Reticulitermes hesperus (Banks). Univ Calif Publ Zool 31:179–200

    Google Scholar 

  • Purdy KJ (2007) The distribution and diversity of Euryarchaeota in termite guts. Adv Appl Microbiol 62:63–80

    CAS  PubMed  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/

  • Raina A, Park YI, Lax A (2004) Defaunation leads to cannibalism in primary reproductives of the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 97:753–756

    Google Scholar 

  • Sbrenna G, Micciarelli Sbrenna A (2008) Le termiti italiane. Catalogo topografico e considerazioni zoogeografiche. Memorie della Società Entomologica Italiana 87:33–60

    Google Scholar 

  • Scharf ME, Karl ZJ, Sethi A, Boucias DG (2011) Multiple levels of synergistic collaboration in termite lignocellulose digestion. PLoS One 6(7):e21709. https://doi.org/10.1371/journal.pone.0021709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seifert K, Becker G (1965) Der chemische Abbau von Laub-und Nadelholzarten durch verschiedene Termiten. Holzforschung 19:105–111

    CAS  Google Scholar 

  • Smith JA, Koehler PG (2007) Changes in Reticulitermes flavipes (Isoptera: Rhinotermitidae) gut xylanolytic activities in response to dietary xylan content. Ann Entomol Soc Am 100:568–573

    Google Scholar 

  • Smythe RV, Carter FL (1970) Feeding responses to sound wood by Coptotermes formosanus, Reticulitermes flavipes, and R. virginicus (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 63:841–847

    Google Scholar 

  • Smythe RV, Mauldin JK (1972) Soldier differentiation, survival, and wood consumption by normally and abnormally faunated workers of the Formosan termite, Coptotermes formosanus. Ann Entomol Soc Am 65:1001–1004

    Google Scholar 

  • Smythe RV, Williams LH (1972) Feeding and survival of two subterranean termite species at constant temperatures. Ann Entomol Soc Am 65:226–229

    Google Scholar 

  • Song D, Hu XP, Su N-Y (2006) Survivorship, cannibalism, body weight loss, necrophagia, and entombment in laboratory groups of the Formosan subterranean termite, Coptotermes formosanus under starvation (Isoptera: Rhinotermitidae). Sociobiology 47:27–39

    Google Scholar 

  • Stuart AM (1969) Social behaviour and communication. In: Krishna K, Weesner FM (eds) Biology of termites, vol 1. Academic Press, New York, London, pp 193–232

    Google Scholar 

  • Su N-Y, LaFage JP (1986) Effects of starvation on survival and maintenance of soldier proportion in laboratory groups of the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 79:312–316

    Google Scholar 

  • Tartar A, Wheeler MM, Zhou X, Coy MR, Boucias DG, Scharf ME (2009) Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol Biofuels 2:e25. https://doi.org/10.1186/1754-6834-2-25

    Article  CAS  Google Scholar 

  • Tsukagoshi H, Nakamura A, Ishida T, Otagiri M, Moriya S, Samejima M, Igarashi K, Kitamoto K, Arioka M (2014) The GH26 b-mannanase RsMan26H from a symbiotic protist of the termite Reticulitermes speratus is an endo-processive mannobiohydrolase: Heterologous expression and characterization. Biochem Biophys Res Commun 452:520–525

    CAS  PubMed  Google Scholar 

  • Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632

    CAS  PubMed  Google Scholar 

  • Weesner FM (1956) The biology of colony foundation in Reticulitermes hesperus Banks. Univ Calif Publ Zool 61:253–314

    Google Scholar 

  • Wheeler MM, Zhou X, Scharf ME, Oi FM (2007) Molecular and biochemical markers for monitoring dynamic shifts of cellulolytic protozoa in Reticulitermes flavipes. Insect Biochem Mol Biol 37:1366–1374

    CAS  PubMed  Google Scholar 

  • Wilson EO (1971) The insect societies. The Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Yoshimura T (1995) Contribution of the protozoan fauna to nutritional physiology of the low termite Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Wood Res 82:68–129

    Google Scholar 

  • Yoshimura T, Azuma J, Tsunoda K, Takahashi M (1993) Cellulose metabolism of the symbiotic protozoa in termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) III: utilization of non-natural celluloses. Mokuzai Gakkaishi 39:1322–1326

    CAS  Google Scholar 

  • Yoshimura T, Azuma J, Tsunoda K, Takahashi M (1994) Changes of wood-attacking activity of the lower termite, Coptotermes formosanus Shiraki in defaunation-refaunation process of the intestinal protozoa. Material und Organismen 28:153–164

    Google Scholar 

  • Yoshimura T, Fujino T, Itoh T, Tsunoda K, Takahashi M (1996) Ingestion and decomposition of wood and cellulose by the protozoa in the hindgut of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) as evidenced by polarizing and transmission electron microscopy. Holzforschung 50:99–104

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Gianna Agrò for support with the statistical analysis of data and two referees for constructive comments and helpful suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lo Pinto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo Pinto, M., Agrò, A. Effects of starvation on survival, cannibalism, body mass, and intestinal protozoan profile in the subterranean termite Reticulitermes lucifugus. Insect. Soc. 66, 611–622 (2019). https://doi.org/10.1007/s00040-019-00711-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-019-00711-1

Keywords

Navigation