Skip to main content
Log in

The Patterson–Sullivan Reconstruction of Pluriharmonic Functions for Determinantal Point Processes on Complex Hyperbolic Spaces

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

The Patterson–Sullivan reconstruction is proved almost surely to recover a Bergman function from its values on a random discrete subset sampled with the determinantal point process induced by the Bergman kernel on the unit ball \({\mathbb {B}}_d\) in \({\mathbb {C}}^d\). For supercritical weighted Bergman spaces, the reconstruction is uniform when the functions range over the unit ball of the weighted Bergman space. We obtain a necessary and sufficient condition for reconstruction of a fixed pluriharmonic function in the complex hyperbolic space of arbitrary dimension; prove simultaneous uniform reconstruction for weighted Bergman spaces as well as strong simultaneous uniform reconstruction for weighted harmonic Hardy spaces; and establish the impossibility of the uniform simultaneous reconstruction for the Bergman space \(A^2({\mathbb {B}}_d)\) on \({\mathbb {B}}_d\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ahern , J. Bruna, and C. Cascante. \(H^p\)-theory for generalized \(M\)-harmonic functions in the unit ball. Indiana Univ. Math. J., 45(1) (1996), 103–135.

    Article  MathSciNet  Google Scholar 

  2. W. Ballmann, M. Gromov, and V. Schroeder. Manifolds of Nonpositive Curvature, Progress in Mathematics, Vol. 61. Birkhäuser Boston, Inc., Boston (1985).

    Book  Google Scholar 

  3. K. F. Barth and P. J. Rippon. Non-tangential limits of slowly growing analytic functions. Comput. Methods Funct. Theory, 8 (2008), no. 1-2, 85–99.

    Article  MathSciNet  Google Scholar 

  4. B. Berndtsson and J. Ortega-Cerdà. On interpolation and sampling in Hilbert spaces of analytic functions. J. Reine Angew. Math. , 464 (1995), 109–128.

    MathSciNet  MATH  Google Scholar 

  5. A. Bonami, J. Bruna, and S. Grellier. On Hardy, BMO and Lipschitz spaces of invariantly harmonic functions in the unit ball. Proc. London Math. Soc. , 77(3) (1998), 665–696.

    Article  MathSciNet  Google Scholar 

  6. A. Borichev, R. Dhuez, and K. Kellay. Sampling and interpolation in large Bergman and Fock spaces. J. Funct. Anal., 242 (2007) 563–606.

    Article  MathSciNet  Google Scholar 

  7. A. I. Bufetov and Y. Qiu. Determinantal point processes associated with Hilbert spaces of holomorphic functions. Commun. Math. Phys., 351 (1) (2017), 1–44.

    Article  MathSciNet  Google Scholar 

  8. A. I. Bufetov, Y. Qiu, and A. Shamov. Kernels of conditional determinantal measures and the Lyons-Peres conjecture. J. Eur. Math. Soc.. arXiv:1612.06751.

  9. D. J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes. Probability and Its Applications. Elementary Theory and Methods, 2nd edn., Vol. I. Springer, New York (2003).

  10. P. L. Duren. Theory of \(H^{p}\) spaces. In: Pure and Applied Mathematics, Vol. 38. Academic Press, New York-London (1970), xii+258 pp.

  11. P. L. Duren and A. P. Schuster. Bergman spaces. In: Mathematical Surveys and Monographs, Vol. 100. American Mathematical Society, Providence (2004), x+318 pp.

  12. S. Ghosh. Determinantal processes and completeness of random exponentials: the critical case. In: Probability Theory and Related Fields (2014), pp. 1–23.

  13. S. Ghosh and Y. Peres. Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues. Duke Math. J. 166 (2017), no. 10, 1789–1858.

    Article  MathSciNet  Google Scholar 

  14. H. Hedenmalm, S. Jakobsson, and S. Shimorin. A biharmonic maximum principle for hyperbolic surfaces. J. Reine Angew. Math. 550 (2002), 25–75.

    MathSciNet  MATH  Google Scholar 

  15. H. Hedenmalm, B. Korenblum, and K. Zhu. Theory of Bergman spaces. In: Graduate Texts in Mathematics, Vol. 199. Springer, New York (2000).

  16. O. Kallenberg. Random Measures. Akademie-Verlag, Berlin, fourth edition (1986).

    MATH  Google Scholar 

  17. S. G. Krantz. Geometric analysis of the Bergman kernel and metric. In: Graduate Texts in Mathematics, Vol. 268. Springer, New York (2013).

  18. Yu. I. Lyubarskii and M. L. Sodin, Analogues of sine type for convex domains, Preprint no. 17, Inst. Low Temperature Phys. Eng., Ukrainian Acad. Sci. (1986).

  19. Y. I. Lyubarskii and K. Seip. Sampling and interpolation of entire functions and exponential systems in convex domains. Ark. Mat. 32 (1994), no. 1, 157–193.

    Article  MathSciNet  Google Scholar 

  20. R. Lyons. Determinantal probability: basic properties and conjectures. In: Proceedings of International Congress of Mathematicians, Vol. IV. Seoul, Korea (2014), pp. 137–161.

  21. O. Macchi. The coincidence approach to stochastic point processes. Advances in Appl. Probability, 7 (1975), 83–122.

    Article  MathSciNet  Google Scholar 

  22. G. R. MacLane. Holomorphic functions of arbitrarily slow growth, without, radial limits. Mich. Math. J., 9 (1962), 2l–24.

    Article  MathSciNet  Google Scholar 

  23. H. Osada and T. Shirai, Absolute continuity and singularity of Palm measures of the Ginibre point process. Probab. Theory Related Fields, 165 (2016), no. 3-4, 725–770.

    Article  MathSciNet  Google Scholar 

  24. S. J. Patterson. The limit set of a Fuchsian group. Acta Math., 136 (1976), p. 241–273.

    Article  MathSciNet  Google Scholar 

  25. Y. Peres and B. Virág. Zeros of the iid Gaussian power series: a conformally invariant determinantal process. Acta Math., 194(1) (2005), 1–35.

    Article  MathSciNet  Google Scholar 

  26. A. Poltoratski. On the boundary behavior of pseudocontinuable functions. St. Petersburg Math. J., 5 (1994), 389–406.

    MathSciNet  Google Scholar 

  27. A. Poltoratski. Maximal properties of the normalized Cauchy transform. J. Amer. Math. Soc., 16 (2003), no. 1, 1–17.

    Article  MathSciNet  Google Scholar 

  28. T. Roblin. Ergodicité et équidistribution en courbure négative. Mém. Soc. Math. Fr. (N.S.), 95 (2003), vi+96.

    MathSciNet  MATH  Google Scholar 

  29. W. Rudin. Function theory in the unit ball of \({\mathbb{C}} ^n\). In: Classics in Mathematics. Springer, Berlin (2008). Reprint of the 1980 edition.

  30. K. Seip. Beurling type density theorems in the unit disk. Invent. Math., 113(193), 21–39.

  31. K. Seip. Interpolation and Sampling in Spaces of Analytic Functions. University Lecture Series 33, American Mathematical Society, Providence (2004), xii+139 pp. ISBN: 0-8218-3554-8.

    Google Scholar 

  32. K. Seip. Interpolation and sampling in small Bergman spaces. Collect. Math., 64 (2013), 61–72.

    Article  MathSciNet  Google Scholar 

  33. T. Shirai and Y. Takahashi. Fermion process and Fredholm determinant. In: Proceedings of the Second ISAAC Congress, Vol. 1 (Fukuoka, 1999), Vol. 7 of Int. Soc. Anal. Appl. Comput., Kluwer Acad. Publ., Dordrecht (2000). pp. 15–23

  34. A. Soshnikov. Determinantal random point fields. Uspekhi Mat. Nauk, 55(335) (2000), 107–160.

    Article  MathSciNet  Google Scholar 

  35. M. Stoll. Boundary limits and non-integrability of \({\cal{M}}\)-subharmonic functions in the unit ball of \({\mathbb{C} }^n (n\ge 1)\). Trans. Amer. Math. Soc., 349 (1997), no. 9, 3773–3785.

  36. M. Stoll. Harmonic and Subharmonic Function Theory on the Hyperbolic Ball. London Mathematical Society Lecture Note Series 431. Cambridge University Press, 1 edition (2016).

  37. D. Sullivan. The density at infinity of a discrete group of hyperbolic motions. Publ. Math. Inst. Hautes Études Sci., 50 (1979), 171–202.

    Article  MathSciNet  Google Scholar 

  38. K. Zhu. Spaces of holomorphic functions in the unit ball. In: Graduate Texts in Mathematics, Vol. 226. Springer, New York (2005).

Download references

Acknowledgements

Mikhael Gromov taught the Patterson-Sullivan theory to the older of us in 1999; we are greatly indebted to him. We are deeply grateful to Alexander Borichev, Sébastien Gouëzel, Pascal Hubert, Alexey Klimenko and Andrea Sambusetti for useful discussions. Part of this work was done during a visit to the Centro Ennio De Giorgi della Scuola Normale Superiore di Pisa. We are deeply grateful to the Centre for its warm hospitality. AB’s research has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, grant agreement No 647133 (ICHAOS), as well as from the ANR grant ANR-18-CE40-0035 REPKA. YQ’s research is supported by the NSF of China, grants NSFC Y7116335K1, 11801547 and 11688101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Bufetov.

Additional information

To the memory of Alexander Ivanovich Balabanov (16.04.1952–25.04.2018)

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The Proof of Proposition 6.2

Appendix: The Proof of Proposition 6.2

Lemma 9.1

There exist two constants \(c, C>0\) depending only on d, such that

$$\begin{aligned}&\frac{c}{(1 - |z|^2)^d} \log \left( \frac{2}{1 - |z|^2}\right) \le K_{W_{\mathrm {cr}}}(z, z) \\&\quad \le \frac{C}{(1 - |z|^2)^d} \log \left( \frac{2}{1 - |z|^2}\right) \quad \hbox { for all}\ z\in {\mathbb {B}}_d. \end{aligned}$$

Lemma 9.2

For any integer \(d\ge 1\), there exist constants \(c_d, C_d> 0\) such that

$$\begin{aligned}&\frac{c_d}{(1 - t)^d} \log \left( \frac{2}{1 - t}\right) \le \sum _{k =0}^\infty (k+1)^{d-1} \log (k + 2) t^k \\&\quad \le \frac{C_d}{(1 - t)^d} \log \left( \frac{2}{1 - t}\right) \quad \hbox { for all}\ t\in (0,1). \end{aligned}$$

Proof

For any integer \(m\ge 1\) and any \(t\in (0, 1)\), we have

$$\begin{aligned} (1 - t) \sum _{k=0}^\infty (k+1)^m \log (k+2) t^k = \sum _{k=0}^\infty \left[ \underbrace{(k+1)^m \log (k+2) - k^m \log (k +1)}_{\hbox { denoted}\ a_{k,m}}\right] t^k. \end{aligned}$$

Clearly, there exist constants \(c_m, C_m>0\) depending only on m such that

$$\begin{aligned} c_m \cdot (k+1)^{m-1} \log (k+2) \le a_{k,m} \le C_m \cdot (k + 1)^{m-1} \log (k +2) \quad \hbox { for all}\ k\ge 0. \end{aligned}$$

Therefore, we have

$$\begin{aligned} \frac{c_m}{1-t} \le \frac{\sum _{k=0}^\infty (k+1)^m \log (k+2) t^k}{\sum _{k=0}^\infty (k+1)^{m-1} \log (k+2) t^k} \le \frac{C_m}{1-t} \quad \hbox { for all}\ t\in (0,1). \end{aligned}$$

It follows that, there exist constants \(c_d', C_d' >0\) such that

$$\begin{aligned} \frac{c_d'}{(1-t)^{d-1}} \le \frac{\sum _{k=0}^\infty (k+1)^{d-1}\log (k+2) t^k}{\sum _{k=0}^\infty \log (k+2) t^k} \le \frac{C_d'}{(1-t)^{d-1}} \quad \hbox { for all}\ t\in (0,1). \end{aligned}$$

Finally, note that for any \(t\in (0, 1)\),

$$\begin{aligned} (1 - t) \sum _{k=0}^\infty \log (k + 2) t^k = \sum _{k=0}^\infty \log \left( 1 + \frac{1}{k+1}\right) t^k \le \log 2 + \sum _{k=1}^\infty \frac{t^k}{k} = \log \left( \frac{2}{ 1 - t}\right) \end{aligned}$$

and there exists \(c''>0\) such that for any \(t\in (0, 1)\),

$$\begin{aligned}&(1 - t) \sum _{k=0}^\infty \log (k + 2) t^k = \sum _{k=0}^\infty \log \left( 1 + \frac{1}{k+1}\right) t^k\\&\quad \ge c'' \left( \log 2 + \sum _{k=1}^\infty \frac{t^k}{k} \right) = c'' \log \left( \frac{2}{ 1 - t}\right) . \end{aligned}$$

Combining the above inequalities, we complete the proof of the lemma. \(\square \)

Proof of Lemma 9.1

Since \(W_{\mathrm {cr}}\) is radial, we have

$$\begin{aligned} K_{W_{\mathrm {cr}}}(z, w) = \sum _{n\in {\mathbb {N}}_0^d} a_n(W_{\mathrm {cr}}) z^n {\bar{w}}^n \quad \hbox {with} z^{n} : = z_1^{n_1} \cdots z_d^{n_d} \hbox {,} a_n(W_{\mathrm {cr}})= \Vert z^n\Vert _{A^2({\mathbb {B}}_d, W_{\mathrm {cr}})}^{-2}. \end{aligned}$$
(9.1)

By the formula of integration in polar coordinates and [ZHU05, Lem. 1.11],

$$\begin{aligned} a_n(W_{\mathrm {cr}})^{-1}&= \int _{{\mathbb {B}}_d} | z^n|^2 W_{\mathrm {cr}} (z) dv_d(z) = 2d \int _0^1 r^{2d + 2|n|-1} W_{\mathrm {cr}}(r)dr \int _{{\mathbb {S}}_d} |\zeta ^n|^2 d\sigma _{{\mathbb {S}}_d}(\zeta ) \\&= d \cdot \frac{n_1! \cdots n_d!}{ (d-1 + |n|)!} \int _0^1 t^{|n| + d -1} ( 1 - t)^{-1} \log ^{- 2} \left( \frac{4}{ 1 - t}\right) dt \\&= d \cdot \frac{n_1! \cdots n_d!}{ (d-1 + |n|)!} \cdot \int _{\log 4}^\infty \frac{(1 - 4 e^{-x})^{|n| + d -1}}{x^2} dx. \end{aligned}$$

Claim: There exist two constants \(c_1, c_2 > 0\) such that

$$\begin{aligned} \frac{c_1}{\log (4k +4)} \le \int _{\log 4}^\infty \frac{(1 - 4 e^{-x})^k}{x^2} dx \le \frac{c_2}{\log (4k +4)} \quad \hbox { for all integer}\ k\ge 0. \end{aligned}$$

Indeed, for any integer \(k \ge 0\), we have the lower estimate of the integral:

$$\begin{aligned} \int _{\log 4}^\infty (1 - 4 e^{-x})^k \frac{dx}{x^2}\ge & {} \int _{\log (4k+4)}^\infty (1 - 4 e^{-x})^k \frac{dx}{x^2} \\\ge & {} \int _{\log (4k+4)}^\infty \left( 1 - \frac{1}{k+1}\right) ^k \frac{dx}{x^2} \ge \frac{c_1}{\log (4k +4)}. \end{aligned}$$

Now set \( H_k(x): = (1 - 4 e^{-x})^k/x^2\) for \(x \in [\log 4, \infty )\). For \(k\ge 1\), we can show, by studying the derivative \(H_k'(x)\), that \(H_k\) is increasing on the interval \([\log 4, \log (4k +4)]\) and hence

$$\begin{aligned} H_k(x) \le H_k(\log (4k+4)) \le \frac{1}{\log ^2 (4k +4)} \quad \hbox { for all}\ x\in [\log 4, \log (4k +4)]. \end{aligned}$$

Therefore, for any \(k\ge 1\), we have

$$\begin{aligned} \int _{\log 4}^\infty H_k(x) dx \!\le \! \sup _{\log 4 \le x \le \log (4k +4)} H_k(x) \!\cdot \! \int _{\log 4}^{\log (4k +4)} dx \!+\! \int _{\log (4k + 4)}^\infty \frac{ 1}{x^2}dx \!\le \! \frac{2}{\log (4k \!+\!4)}. \end{aligned}$$

Consequently, there exist constants \(c_3, c_4> 0\) such that for any \(n\in {\mathbb {N}}_0^d\), we have

$$\begin{aligned} c_3 \le \frac{ a_n(W_{\mathrm {cr}})^{-1}}{ \displaystyle d \cdot \frac{n_1! \cdots n_d!}{ (d-1 + |n|)!} \frac{1}{\log (4(|n|+d))}} \le c_4. \end{aligned}$$
(9.2)

By using the elementary identity (see e.g. Zhu [ZHU05, formula (1.1)])

$$\begin{aligned} \sum _{n \in {\mathbb {N}}_0^d: |n| = k } \frac{r_1^{n_1} \cdots r_d^{n_d}}{n_1!\cdots n_d!} = \frac{(r_1 + \cdots + r_d)^k}{k!}, \end{aligned}$$

we obtain, for any \(z\in {\mathbb {B}}_d\), that

$$\begin{aligned} \Phi (z) = : \sum _{n \in {\mathbb {N}}_0^d} \frac{(d -1 + |n|)!}{d} \frac{\log (4(|n|+d)) }{n_1!\cdots n_d!} |z^n|^{2}= \sum _{k=0}^\infty \frac{(d -1 +k)!}{ d \cdot k!} \log (4(k+d)) |z|^{2k}. \end{aligned}$$

Therefore, by the limit equalities

$$\begin{aligned} \lim _{k\rightarrow \infty }\frac{(d-1+k)!}{(k+1)^{d-1} \cdot k!} = 1 \text { and }\lim _{k\rightarrow \infty }\frac{\log (4 (k + d))}{\log (k + 2)} = 1 \end{aligned}$$

and Lemma 9.2, there exist constants \(c_5, c_6> 0\), such that

$$\begin{aligned} \frac{c_5}{(1 - |z|^2)^d} \log \left( \frac{2}{1 - |z|^2}\right) \le \Phi (z)\le \frac{c_6}{(1 - |z|^2)^d} \log \left( \frac{2}{1 - |z|^2}\right) . \end{aligned}$$

Finally, comparing (9.1) with the definition of \(\Phi (z)\) and using (9.2), we obtain \(c_3 \Phi (z) \le K_{W_{\mathrm {cr}}}(z,z) \le c_4 \Phi (z)\) for all \(z\in {\mathbb {B}}_d\). This completes the whole proof. \(\square \)

Let \(\Phi : [0, 1) \rightarrow {\mathbb {R}}_{+}\) be a function in \(L^1([0,1])\) such that \(\int _{\delta }^1 \Phi (r)dr > 0\) for any \(\delta \in (0, 1)\). Let \(B: [0, 1)\rightarrow {\mathbb {R}}_{+}\) be a function such that \(B\Phi \in L^1([0,1])\) and \( \lim _{r\rightarrow 1^{-}} B(r) = \infty . \) Define two radial Bergman-admissible weights on \({\mathbb {B}}_d\) by \(W_\Phi (z) = \Phi (|z|)\) and \(W_{B\Phi }(z) = B(|z|) \Phi (|z|)\). We shall compare the reproducing kernels \(K_{W_\Phi }\) and \(K_{W_{B\Phi }}\). Clearly,

$$\begin{aligned} \lim _{k\rightarrow \infty } \frac{ \int _0^1 r^k \Phi (r) dr}{ \int _0^1 r^k B(r) \Phi (r)dr} = 0. \end{aligned}$$
(9.3)

Lemma 9.3

Under the above assumptions on \(\Phi \) and B, we have

$$\begin{aligned} \lim _{|z|\rightarrow 1^{-}} \frac{K_{W_{B\Phi }}(z,z)}{K_{W_\Phi }(z,z)} = 0. \end{aligned}$$

Proof

Since \(W_\Phi : {\mathbb {B}}_d\rightarrow {\mathbb {R}}_{+}\) is radial, we have

$$\begin{aligned} K_{W_\Phi }(z, w)= & {} \sum _{n\in {\mathbb {N}}_0^d} a_n(\Phi ) z^n {\bar{w}}^n \quad \hbox { with}\ a_n(\Phi )= \Vert z^n\Vert _{A^2({\mathbb {B}}_d, W_\Phi )}^{-2} \\= & {} \Vert z_1^{n_1} \cdots z_d^{n_d}\Vert _{A^2({\mathbb {B}}_d, W_\Phi )}^{-2}. \end{aligned}$$

For any \(n\in {\mathbb {N}}_0^d\), by the formula of integration in polar coordinates,

$$\begin{aligned} a_n(\Phi )^{-1} = \int _{{\mathbb {B}}_d} | z^n|^2 \Phi (|z|) dv_d(z) = 2d \int _0^1 r^{2d + 2|n|-1} \Phi (r)dr \int _{{\mathbb {S}}_d} |\zeta ^n|^2 d\sigma _{{\mathbb {S}}_d}(\zeta ). \end{aligned}$$

Replacing \(\Phi \) by \(B\Phi \), we obtain the corresponding formulas for \(K_{W_{B\Phi }}\) and for \(a_n(B\Phi )\). In particular, we see that the ratio \(\frac{a_n(B\Phi )}{a_n(\Phi )}\) depends only on |n|:

$$\begin{aligned} R_{|n|}: = \frac{a_n(B\Phi )}{a_n(\Phi )} = \frac{ \int _0^1 r^{2d + 2|n|-1} W(r)dr}{ \int _0^1 r^{2d + 2|n|-1} B(r) W(r)dr}. \end{aligned}$$

Then for any \(z\in {\mathbb {B}}_d\), by writing \(z = r\zeta \) with \(r = |z|\) and \(\zeta = z/r\in {\mathbb {S}}_d\), we have

$$\begin{aligned} K_{W_\Phi }(z,z)&= \sum _{k=0}^\infty \left( \sum _{n\in {\mathbb {N}}_0^d: |n| = k} a_n(\Phi ) |z^n|^2\right) = \sum _{k=0}^\infty \left( \sum _{n\in {\mathbb {N}}_0^d: |n| = k} a_n(\Phi ) |\zeta ^n|^2\right) r^{2k},\\ K_{W_{B\Phi }}(z,z)&= \sum _{k=0}^\infty \left( \sum _{n\in {\mathbb {N}}_0^d: |n| = k} a_n(B\Phi ) |z^n|^2\right) = \sum _{k=0}^\infty R_k \cdot \left( \sum _{n\in {\mathbb {N}}_0^d: |n| = k} a_n(\Phi ) |\zeta ^n|^2\right) r^{2k}. \end{aligned}$$

Since \(W_\Phi \) is radial, the transformation \(f(\cdot ) \mapsto f (U\cdot )\) is unitary on \(A^2({\mathbb {B}}_d, W_\Phi )\) for any \(d\times d\) unitary matrix U. Hence by (3.9), the function \(z \mapsto K_{W_\Phi }(z,z)\) is radial and thus

$$\begin{aligned} A_k(\Phi ): = \sum _{n\in {\mathbb {N}}_0^d: |n| = k} a_n(\Phi ) |\zeta ^n|^2 \quad \hbox { does not depend on}\ \zeta \in {\mathbb {S}}_d. \end{aligned}$$

Now by (9.3), we have \(\lim _{k\rightarrow \infty } R_{k} = 0\). It follows that

$$\begin{aligned} \limsup _{|z|\rightarrow 1^{-}} \frac{K_{W_{B\Phi }}(z,z)}{K_{W_\Phi }(z,z)} = \limsup _{r\rightarrow 1^{-}} \frac{ \sum _{k=0}^\infty R_k A_k(\Phi ) r^{2k} }{ \sum _{k=0}^\infty A_k(\Phi ) r^{2k} } = 0. \end{aligned}$$

In the last step, we use the following elementary fact: for any two sequences \((a_k)_{k\in {\mathbb {N}}_0}, (b_k)_{k\in {\mathbb {N}}_0}\) in \({\mathbb {R}}_{+}\) with \(\lim _{k\rightarrow \infty } a_k/b_k = 0\), the following limit

$$\begin{aligned} \lim _{t \rightarrow 1^{-}} \frac{ \sum _{k\in {\mathbb {N}}_0} a_k t^k }{\sum _{k\in {\mathbb {N}}_0} b_k t^k} = 0 \end{aligned}$$

holds provided that the two series \(\sum _{k\in {\mathbb {N}}_0} a_k t^k, \sum _{k\in {\mathbb {N}}_0} b_k t^k\) converge for all \(t\in (0, 1)\) and \(\sum _{k\in {\mathbb {N}}_0} b_k = \infty \). \(\square \)

Proof of Proposition 6.2

We can write \(W_{\mathrm {cr}} = W_{\Phi }\) for a function \(\Phi : [0, 1) \rightarrow {\mathbb {R}}_{+}\). Let W be a supercritical weight on \({\mathbb {B}}_d\). Set \( B(r) : = \inf _{\zeta \in {\mathbb {S}}_d} W(r \zeta )/\Phi (r) \) for any \(r\in [0,1)\). By (6.1), \( \lim _{r\rightarrow 1^{-}} B(r)= \infty . \) Hence by Lemma 9.3, we have

$$\begin{aligned} \lim _{|z|\rightarrow 1^{-}} \frac{K_{W_{B\Phi }} (z, z) }{K_{W_{\mathrm {cr}}} (z, z)} = \lim _{|z|\rightarrow 1^{-}} \frac{K_{W_{B\Phi }} (z, z) }{K_{W_{\Phi }} (z, z)} = 0. \end{aligned}$$

Since \( B(|z|) \Phi (|z|) \le W(z)\), by (3.9), we have \( K_W(z,z) \le K_{W_{B\Phi }}(z,z). \) The desired estimate of \(K_W(z,z)\) now follows from Lemma 9.1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bufetov, A.I., Qiu, Y. The Patterson–Sullivan Reconstruction of Pluriharmonic Functions for Determinantal Point Processes on Complex Hyperbolic Spaces. Geom. Funct. Anal. 32, 135–192 (2022). https://doi.org/10.1007/s00039-022-00592-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-022-00592-w

Keywords

Mathematics Subject Classification

Navigation