Skip to main content
Log in

Bounded cohomology of finitely generated Kleinian groups

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Any action of a group \({\Gamma}\) on \({\mathbb{H}^3}\) by isometries yields a class in degree three bounded cohomology by pulling back the volume cocycle to \({\Gamma}\). We prove that the bounded cohomology of finitely generated Kleinian groups without parabolic elements distinguishes the asymptotic geometry of geometrically infinite ends of hyperbolic 3-manifolds. That is, if two homotopy equivalent hyperbolic manifolds with infinite volume and without parabolic cusps have different geometrically infinite end invariants, then they define a 2 dimensional subspace of bounded cohomology. Our techniques apply to classes of hyperbolic 3-manifolds that have sufficiently different end invariants, and we give explicit bases for vector subspaces whose dimension is uncountable. We also show that these bases are uniformly separated in pseudo-norm, extending results of Soma. The technical machinery of the Ending Lamination Theorem allows us to analyze the geometrically infinite ends of hyperbolic 3-manifolds with unbounded geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Agol. Tameness of Hyperbolic 3-Manifolds. Online at https://arxiv.org/pdf/math/0405568.pdf (2004).

  2. Ahlfors, L.V.: An extension of Schwarz's lemma. Trans. Am. Math. Soc. 43(3), 359–364 (1938)

    MathSciNet  MATH  Google Scholar 

  3. J. Brock, R. Canary and Y. Minsky. The Classification of Finitely-Generated Kleinian Groups, in preparation

  4. J.F. Brock, R.D. Canary, and Y.N. Minsky. The classification of Kleinian surface groups, II: The ending lamination conjecture. Ann. of Math. (2) (1)176 (2012), 1–149

  5. Bonahon, F.: Bouts des varietes hyperboliques de dimension 3. Annals of Mathematics 124(1), 71–158 (1986)

    Article  MathSciNet  Google Scholar 

  6. R. Brooks. Some Remarks on Bounded Cohomology, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, 1978), Annals of Mathematics Studies, vol. 97, Princeton Univ. Press, Princeton, NJ, (1981), pp. 53–63

  7. Brock, J.F.: The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores. Journal of the American Mathematical Society 16(3), 495–535 (2003)

    Article  MathSciNet  Google Scholar 

  8. Canary, R.D.: Ends of hyperbolic 3-manifolds. Journal of the American Mathematical Society 6(1), 1–35 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Canary, R.D.: A covering theorem for hyperbolic \(3\)-manifolds and its applications. Topology 35(3), 751–778 (1996)

    Article  MathSciNet  Google Scholar 

  10. Calegari, D., Gabai, D.: Shrinkwrapping and the taming of hyperbolic 3-manifolds. J. Amer. Math. Soc. 19(2), 385–446 (2006)

    Article  MathSciNet  Google Scholar 

  11. Durham, M.G.: The augmented marking complex of a surface. Journal of the London Mathematical Society 94(3), 933 (2016)

    Article  MathSciNet  Google Scholar 

  12. F. Franceschini, R. Frigerio, M.B. Pozzetti, and A. Sisto. The Zero Norm Subspace of Bounded Cohomology of Acylindrically Hyperbolic Groups. ArXiv e-prints (2017)

  13. M. Gromov. Volume and bounded cohomology. Publications Mathmatiques de l'IHS 56 (1982), 5–99 (eng)

  14. Ivanov, N.V.: Foundations of the theory of bounded cohomology. Journal of Soviet Mathematics 37(3), 1090–1115 (1987)

    Article  Google Scholar 

  15. N.V. Ivanov. The second bounded cohomology group. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), no. Issled. Topol. 167(6) (1988), 117–120, 191

  16. E. Klarreich. The Boundary at Infinity of the Curve Complex and the Relative Teichmüller Space. Available online at http://www.ericaklarreich.com/curvecomplex.pdf.

  17. G. Kleineidam and J. Souto. Ending Laminations in the Masur Domain, London Mathematical Society Lecture Note Series, p. 105130, Cambridge University Press (2003)

  18. Minsky, Y.: The classification of Kleinian surface groups, I: models and bounds. Annals of Mathematics 171(1), 1–107 (2010)

    Article  MathSciNet  Google Scholar 

  19. Matsumoto, S., Morita, S.: Bounded cohomology of certain groups of homeomorphisms. Proc. Amer. Math. Soc. 94(3), 539–544 (1985)

    Article  MathSciNet  Google Scholar 

  20. Masur, H.A., Minsky, Y.N.: Geometry of the complex of curves. I. Hyperbolicity. Invent. Math. 138(1), 103–149 (1999)

    Article  MathSciNet  Google Scholar 

  21. Masur, H.A., Minsky, Y.N.: Geometry of the complex of curves. II. Hierarchical structure. Geom. Funct. Anal. 10(4), 902–974 (2000)

    Article  Google Scholar 

  22. Namazi, H., Souto, J.: Non-realizability and ending laminations: proof of the density conjecture. Acta Math. 209(2), 323–395 (2012)

    Article  MathSciNet  Google Scholar 

  23. Otal, J.-P.: Courants géodésiques et produits libres. Université Paris-Sud, Orsay, Thèse d'Etat (1988)

    Google Scholar 

  24. T. Soma. The zero-norm subspace of bounded cohomology. Commentarii Mathematici Helvetici, (4), 582–592

  25. Soma, T.: Bounded cohomology and topologically tame Kleinian groups. Duke Math. J. 88(2), 357–370 (1997)

    Article  MathSciNet  Google Scholar 

  26. Soma, T.: Bounded cohomology of closed surfaces. Topology 36(6), 1221–1246 (1997)

    Article  MathSciNet  Google Scholar 

  27. Soma, T.: Existence of non-Banach bounded cohomology. Topology 37(1), 179–193 (1998)

    Article  MathSciNet  Google Scholar 

  28. Soma, T.: Existence of ruled wrappings in hyperbolic 3-manifolds. Geom. Topol. 10, 1173–1184 (2006)

    Article  MathSciNet  Google Scholar 

  29. W.P. Thurston. The Geometry and Topology of 3-Manifolds. Princeton University Lecture Notes (1982). Available online at http://www.msri.org/publications/books/gt3m

  30. W.P. Thurston. Hyperbolic structures on \(3\)-manifolds. I: Deformation of acylindrical manifolds. Ann. of Math. (2)124 (1986), 203–246

  31. W.P. Thurston. Hyperbolic Structures on 3-manifolds, II: Surface Groups and 3-Manifolds which Fiber Over the Circle, ArXiv Mathematics e-prints (1998)

  32. T. Yoshida. On 3-dimensional bounded cohomology of surfaces, Homotopy theory and related topics (Kyoto, 1984), Adv. Stud. Pure Math., vol. 9, North- Holland, Amsterdam, (1987), pp. 173–176

Download references

Acknowledgments

The author would like to thank Kenneth Bromberg for many hours of his time and for his patience. Helpful conversations with Maria Beatrice Pozzetti inspired the contents of Section 7.3, which were useful for improving a result from a previous draft of this manuscript. We would also like to thank the hospitality of the MSRI and partial support of the NSF under Grants DMS-1246989 and DMS-1440140.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Farre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farre, J. Bounded cohomology of finitely generated Kleinian groups. Geom. Funct. Anal. 28, 1597–1640 (2018). https://doi.org/10.1007/s00039-018-0470-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-018-0470-y

Navigation