Skip to main content
Log in

Growth gap in hyperbolic groups and amenability

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We prove a general version of the amenability conjecture in the unified setting of a Gromov hyperbolic group G acting properly cocompactly either on its Cayley graph, or on a CAT(-1)-space. Namely, for any subgroup H of G, we show that H is co-amenable in G if and only if their exponential growth rates (with respect to the prescribed action) coincide. For this, we prove a quantified, representation-theoretical version of Stadlbauer’s amenability criterion for group extensions of a topologically transitive subshift of finite type, in terms of the spectral radii of the classical Ruelle transfer operator and its corresponding extension. As a consequence, we are able to show that, in our enlarged context, there is a gap between the exponential growth rate of a group with Kazhdan’s property (T) and the ones of its infinite index subgroups. This also generalizes a well-known theorem of Corlette for lattices of the quaternionic hyperbolic space or the Cayley hyperbolic plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baladi V.: Positive transfer operators and decay of correlations, volume 16 of Advanced Series in Nonlinear Dynamics. World Scientific Publishing Co.Inc., River Edge, NJ (2000)

    Book  Google Scholar 

  2. Ballmann W.: Lectures on spaces of nonpositive curvature, volume 25 of DMV Seminar. Birkhäuser Verlag, Basel (1995)

    Book  Google Scholar 

  3. Bekka M.E.B., de la Harpe P., Valette A.: Kazhdan’s property (T), volume 11 of New Mathematical Monographs. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  4. Bourbaki N.: Éléments de mathématique Topologie générale. Chapitres 1 à 4. Hermann, Paris (1971)

    MATH  Google Scholar 

  5. Brooks. R., The fundamental group and the spectrum of the Laplacian. Commentarii Mathematici Helvetici, 56(4), 581–598 (1981)

    Article  MathSciNet  Google Scholar 

  6. Brooks. R. The bottom of the spectrum of a Riemannian covering. Journal für die Reine und Angewandte Mathematik. [Crelle’s Journal], 357(357), 101–114 (1985)

    MathSciNet  MATH  Google Scholar 

  7. Burger M.: Spectre du laplacien, graphes et topologie de Fell. Commentarii Mathematici Helvetici, 63(2), 226–252 (1988)

    Article  MathSciNet  Google Scholar 

  8. Champetier C.: Petite simplification dans les groupes hyperboliques. Toulouse. Facultédes Sciences. Annales. Mathématiques. Série 6, 3(2), 161–221 (1994)

    Article  MathSciNet  Google Scholar 

  9. Cohen J.M.: Cogrowth and amenability of discrete groups. Journal of Functional Analysis, 48(3) 301–309 (1982)

    Article  MathSciNet  Google Scholar 

  10. D. Constantine, J.-F. Lafont, and D. Thompson. The weak specification property for geodesic flows on CAT(-1) spaces. arXiv.org, (June 2016).

  11. Conway J.B.: A course in functional analysis, volume 96 of Graduate Texts in Mathematics. Springer-Verlag, New York (1985)

    Book  Google Scholar 

  12. Coornaert M.: Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov. Pacific Journal of Mathematics, 159(2), 241–270 (1993)

    Article  MathSciNet  Google Scholar 

  13. Coornaert M., Delzant T., Papadopoulos A.: Géométrie et théorie des groupes, volume 1441 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1990)

    MATH  Google Scholar 

  14. Coornaert M., Papadopoulos A.: Symbolic dynamics and hyperbolic groups, volume 1539 of Lecture Notes in Mathematics. Springer–Verlag, Berlin (1993)

    MATH  Google Scholar 

  15. Coornaert M., Papadopoulos A.: Horofunctions and symbolic dynamics on Gromov hyperbolic groups. Glasgow Mathematical Journal, 43(3), 425–456 (2001)

    Article  MathSciNet  Google Scholar 

  16. Coornaert M., Papadopoulos A.: Symbolic coding for the geodesic flow associated to a word hyperbolic group. Manuscripta Mathematica 109(4), 465–492 (2002)

    Article  MathSciNet  Google Scholar 

  17. Corlette. K.Hausdorff dimensions of limit sets. I. Inventiones Mathematicae, 102(3) 521–541 (1990)

    Article  MathSciNet  Google Scholar 

  18. Dal’Bo F.: Geodesic and horocyclic trajectories. Universitext. Springer-Verlag London, Ltd. (2011) EDP Sciences, Les Ulis, London

    Book  Google Scholar 

  19. Dal’Bo F., Otal J.-P., Peigné M.: Séries de Poincaré des groupes géométriquement finis. Israel Journal of Mathematics, 118(1), 109–124 (2000)

    Article  MathSciNet  Google Scholar 

  20. Dal’Bo F., M. , Peigné M., Picaud J.-C., Sambusetti A.: Convergence and counting in infinite measure. Université de Grenoble. Annales de l’Institut Fourier, 67(2), 483–520 (2017)

    Article  MathSciNet  Google Scholar 

  21. R. Dougall. Critical exponents of normal subgroups, the spectrum of group extended transfer operators, and Kazhdan distance. arXiv.org, (Feb. 2017).

  22. R. Dougall and R. Sharp. Amenability, critical exponents of subgroups and growth of closed Geodesics. Mathematische Annalen. (3–4)365 (2016), 1359–1377.

    Article  MathSciNet  Google Scholar 

  23. Fisher D., Margulis G.: Almost isometric actions, property (T), and local rigidity. Inventiones Mathematicae, 162(1), 19–80 (2005)

    Article  MathSciNet  Google Scholar 

  24. R.I. Grigorchuk. Symmetrical random walks on discrete groups. In Multicomponent random systems, pages 285–325. Dekker, New York, (1980).

  25. M. Gromov. Hyperbolic groups. In Math. Sci. Res. Inst. Publ., pages 75–263. Springer, New York, (1987).

  26. Hennion H., Hervé L.: Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness, volume 1766 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (2001)

    Book  Google Scholar 

  27. Jaerisch J.: Group-extended Markov systems, amenability, and the Perron- Frobenius operator. Proceedings of the American Mathematical Society, 143(1), 289–300 (2015)

    Article  MathSciNet  Google Scholar 

  28. Kesten H.: Full Banach mean values on countable groups. Mathematica Scandinavica, 7, 146–156 (1959)

    Article  MathSciNet  Google Scholar 

  29. Margulis G.A.: On the decomposition of discrete subgroups into amalgams. Selecta Mathematica Sovietica, 1(2), 197–213 (1981)

    MathSciNet  MATH  Google Scholar 

  30. F. Mathéus. Flot géodésique et groupes hyperboliques d’après M. Gromov. In S éminaire de Théorie Spectrale et Géométrie, No. 9, Année 1990–1991, pages 67–87. Univ. Grenoble I, Saint-Martin-d’Hères, (1991).

  31. Neumann B.H.: Groups covered by finitely many cosets. Publicationes Mathematicae Debrecen 3, 227–242 (1955) 1954.

    MathSciNet  MATH  Google Scholar 

  32. Paulin F.: Un groupe hyperbolique est déterminé par son bord. Journal of the London Mathematical Society. Second Series, 54(1), 50–74 (1996)

    Article  MathSciNet  Google Scholar 

  33. Paulin F.: On the critical exponent of a discrete group of hyperbolic isometries. Differential Geometry and its Applications, 7(3), 231–236 (1997)

    Article  MathSciNet  Google Scholar 

  34. Roblin T.: Un théorème de Fatou pour les densités conformes avec applications aux revêtements galoisiens en courbure négative. Israel Journal of Mathematics, 147(1), 333–357 (2005)

    Article  MathSciNet  Google Scholar 

  35. T. Roblin and S. Tapie. Exposants critiques et moyennabilité. In Géométrie ergodique, pages 61–92. Enseignement Math., Geneva, Hoboken, NJ, USA, (2013).

  36. Stadlbauer M.: An extension of Kesten’s criterion for amenability to topological Markov chains. Advances in Mathematics, 235, 450–468 (2013)

    Article  MathSciNet  Google Scholar 

  37. Tukia P.: Convergence groups and Gromov’s metric hyperbolic spaces. New Zealand Journal of Mathematics, 23(2), 157–187 (1994)

    MathSciNet  MATH  Google Scholar 

  38. Watatani Y.: Property T of Kazhdan implies property FA of Serre. Mathematica Japonica, 27(1), 97–103 (1982)

    MathSciNet  MATH  Google Scholar 

  39. Woess W.: Random walks on infinite graphs and groups, volume 138 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Coulon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coulon, R., Dal’Bo, F. & Sambusetti, A. Growth gap in hyperbolic groups and amenability. Geom. Funct. Anal. 28, 1260–1320 (2018). https://doi.org/10.1007/s00039-018-0459-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-018-0459-6

Navigation