Skip to main content
Log in

A discretized Severi-type theorem with applications to harmonic analysis

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In 1901, Severi proved that if \({{Z}}\) is an irreducible hypersurface in \({\mathbb{P}^{4}(C)}\) that contains a three dimensional set of lines, then \({{Z}}\) is either a quadratic hypersurface or a scroll of planes. We prove a discretized version of this result for hypersurfaces in \({\mathbb{R}^{4}}\). As an application, we prove that at most \({\delta^{{-2}{-\epsilon}}}\) direction-separated δ-tubes can be contained in the δ-neighborhood of a low-degree hypersurface in \({\mathbb{R}^{4}}\). This result leads to improved bounds on the restriction and Kakeya problems in \({\mathbb{R}^{4}}\). Combined with previous work of Guth and the author, this result implies a Kakeya maximal function estimate at dimension 3+1/28, which is an improvement over the previous bound of 3 due to Wolff. As a consequence, we prove that every Besicovitch set in \({\mathbb{R}^{4}}\) must have Hausdorff dimension at least 3 + 1/28. Recently, Demeter showed that any improvement over Wolff’s bound for the Kakeya maximal function yields new bounds on the restriction problem for the paraboloid in \({\mathbb{R}^{4}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barone S., Basu. S.: On a real analog of Bezout inequality and the number of connected components of sign conditions. Proc. London Math. Soc., (1) 112, 115–145 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bochnak J., Coste M., Roy M.: Real algebraic geometry. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  3. Brudnyi Y., Ganzburg I.: On an extremal problem for polynomials in n variables. Math. USSR Izvestijia 7, 345–356 (1973)

    Article  Google Scholar 

  4. Córdoba A.: The Kakeya maximal function and the spherical summation multiplier. Am. J. Math. 99, 1–22 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Demeter. On the restriction theorem for paraboloid in \({\mathbb{R}^{4}}\). arXiv:1701.03523. (2017).

  6. Dvir Z.: On the size of Kakeya sets in finite fields. J. Amer. Math. Soc. 22, 1093–1097 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dvir Z., Kopparty S., Saraf S., Sudan M.: Extensions to the method of multiplicities, with applications to Kakeya sets and mergers. SIAM J. Comput.(6) 42, 2305–2328 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fefferman C.: Inequalities for strongly singular convolution operators. Acta Math. 124, 9–36 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guth L.: Restriction estimates using polynomial partitioning. J. Amer. Math. Soc. (2) 29, 371–413 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Guth. Restriction estimates using polynomial partitioning II. arXiv:1603.04250. (2016).

  11. L. Guth, J. Zahl. Polynomial Wolff axioms and Kakeya-type estimates in \({\mathbb{R}^{4}}\). To appear, Proc. London Math. Soc., arXiv:1701.07045. (2017).

  12. Katz N., Łaba I., Tao T.: An improved bound on the Minkowski dimension of Besicovitch sets in \({\mathbb{R}^{3}}\). Ann. of Math. 152, 383–446 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. N. Katz, K. Rogers. On the polynomial Wolff axioms. arXiv:1802.09094. (2018).

  14. N. Katz, J. Zahl. An improved bound on the Hausdorff dimension of Besicovitch sets in \({\mathbb{R}^{3}}\). arXiv:1704.07210. (2017).

  15. Łaba I., Tao T.: An improved bound for the Minkowski dimension of Besicovitch sets in medium dimension. Geom. Funct. Anal. (4) 11, 773–806 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Milnor J.: On the Betti numbers of real varieties. Proc. Amer. Math. Soc. (2) 15, 275–280 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rogora E.: Varieties with many lines. Manuscripta Math.(1) 82, 207–226 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Segre. Sulle \({{V}_{n}}\) aventi piú di \(\infty^{n-k}{S}_{k}\). Rendiconti dellaccademia nazionale dei Lincei., Vol. V, note I e II. (1948).

  19. Severi F.: Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni, e a’suoi punti tripli apparenti. Rend. circ. mat. Palermo, (1) 15, 33–51 (1901)

    Article  MATH  Google Scholar 

  20. Sharir M., Solomon. N.: Incidences between points and lines in \({\mathbb{R}^{4}}\). Disc. Comput. Geom. (3) 57, 702–756 (2017)

    Article  MATH  Google Scholar 

  21. Tao T.: A new bound for finite field Besicovitch sets in four dimensions. Pacific J. Math. 222, 43–57 (2005)

    Article  MathSciNet  Google Scholar 

  22. Wolff T.: An improved bound for Kakeya type maximal functions. Rev. Mat. Iberoam. (3) 11, 651–674 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wongkew R.: Volumes of tubular neighbourhoods of real algebraic varieties. Pacific J Math. 159, 177–184 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yomdin Y., Comte G.: Tame geometry with application in smooth analysis. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  25. Zygmund A.: On Fourier coefficients and transforms of functions of two variables. Studia Math. 50, 189–201 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Zahl.

Additional information

J. Zahl: Supported by a NSERC Discovery Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahl, J. A discretized Severi-type theorem with applications to harmonic analysis. Geom. Funct. Anal. 28, 1131–1181 (2018). https://doi.org/10.1007/s00039-018-0455-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-018-0455-x

Navigation