Skip to main content
Log in

On the 16-rank of class groups of \({\mathbb{Q}(\sqrt{-8p})}\) for \({p \equiv -1 {\rm mod} 4}\)

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We use a variant of Vinogradov’s method to show that the density of the set of prime numbers \({p \equiv -1 {\rm mod} 4}\) for which the class group of the imaginary quadratic number field \({\mathbb{Q}(\sqrt{-8p})}\) has an element of order 16 is equal to 1/16, as predicted by the Cohen–Lenstra heuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Cohen and H.W. Lenstra, Jr. Heuristics on class groups of number fields. In: Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), volume 1068 of Lecture Notes in Math., Springer, Berlin (1984), pp. 33–62.

  2. Cohn H., Lagarias J.C. (1983) On the existence of fields governing the 2-invariants of the classgroup of Q \({(\sqrt{dp})}\) as p varies. Math. Comp., 41(164): 711–730

  3. H. Cohn and J.C. Lagarias. Is there a density for the set of primes p such that the class number of Q \({(\sqrt{-p})}\) is divisible by 16? In: Topics in classical number theory, Vol. I, II (Budapest, 1981), volume 34 of Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam (1984), pp. 257–280.

  4. D. A. Cox. Primes of the form x 2 + ny 2. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, (1989). Fermat, class field theory and complex multiplication.

  5. Davenport H.: On a principle of Lipschitz. J. London Math. Soc., 26, 179–183 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Davenport. Corrigendum: “On a principle of Lipschitz“. J. London Math. Soc., 39 (1964), 580

  7. Fouvry E., Klüners J. (2007) On the 4-rank of class groups of quadratic number fields. Invent. Math., 167(3): 455–513

  8. Fouvry E., Klüners J.: On the negative Pell equation. Ann. of Math. (2) 172(3), 2035–2104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fouvry E., Klüners J.: The parity of the period of the continued fraction of \({\sqrt d}\). Proc. Lond. Math. Soc. (3) 101(2), 337–391 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Friedlander J. B., Iwaniec H.: The polynomial \({X^2+Y^4}\) captures its primes. Ann. of Math. (2) 148(3), 945–1040 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Friedlander J. B., Iwaniec H., Mazur B., Rubin K.: The spin of prime ideals. Invent. Math. 193(3), 697–749 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. C.F. Gauss. Disquisitiones arithmeticae. Springer-Verlag, New York (1986). Translated and with a preface by Arthur A. Clarke, Revised by William C. Waterhouse, Cornelius Greither and A. W. Grootendorst and with a preface by Waterhouse.

  13. Halter-Koch F., Kaplan P., Williams K.S.: An Artin character and representations of primes by binary quadratic forms. II. Manuscripta Math., 37(3), 357–381 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Hasse. Über die Klassenzahl des Körpers \({P(\surd-2p)}\) mit einer Primzahl \({p\not=2}\). J. Number Theory, 1 (1969), 231–234

  15. G.J. Janusz. Algebraic number fields. Academic Press [A Subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London (1973). Pure and Applied Mathematics, Vol. 55.

  16. S. Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag, New York, third edition (2002).

  17. Leonard P.A., Williams K.S.: On the divisibility of the class numbers of \({Q(\sqrt{-p})}\) and \({Q(\sqrt{-2p})}\) by 16. Canad. Math. Bull., 25(2), 200–206 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. D.A. Marcus. Number fields. Springer-Verlag, New York-Heidelberg, (1977). Universitext.

  19. L. Rédei. Arithmetischer Beweis des Satzes über die Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper. J. Reine Angew. Math., 171(1982), 55–60

  20. H. Reichardt. Zur Struktur der absoluten Idealklassengruppe im quadratischen Zahlkörper. J. Reine Angew. Math., 170(1934), 75–82

  21. Serre J.-P.: Quelques applications du théorème de densité de Chebotarev. Inst. Hautes Études Sci. Publ. Math., 54, 323–401 (1981)

    Article  MATH  Google Scholar 

  22. Jean-Pierre Serre. Minerva Lectures 2012 - J.P. Serre Talk 1: Equidistribution.

  23. P. Stevenhagen. Ray class groups and governing fields. In: Théorie des nombres, Année 1988/89, Fasc. 1, Publ. Math. Fac. Sci. Besançon, page 93. Univ. Franche-Comté, Besançon, (1989).

  24. Stevenhagen P.: Divisibility by 2-powers of certain quadratic class numbers. J. Number Theory, 43(1), 1–19 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. I.M. Vinogradov. The method of trigonometrical sums in the theory of numbers. Trav. Inst. Math. Stekloff, 23 (1947), 109

  26. I.M. Vinogradov. The method of trigonometrical sums in the theory of numbers. Dover Publications, Inc., Mineola, NY (2004). Translated from the Russian, revised and annotated by K. F. Roth and Anne Davenport, Reprint of the 1954 translation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djordjo Milovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milovic, D. On the 16-rank of class groups of \({\mathbb{Q}(\sqrt{-8p})}\) for \({p \equiv -1 {\rm mod} 4}\) . Geom. Funct. Anal. 27, 973–1016 (2017). https://doi.org/10.1007/s00039-017-0419-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-017-0419-6

Mathematics Subject Classification

Navigation