Skip to main content
Log in

Experimental grazer exclusion increases pollination reliability and influences pollinator-mediated plant-plant interactions in tibetan alpine meadows

  • Original Article
  • Published:
Alpine Botany Aims and scope Submit manuscript

Abstract

1. Co-flowering plant species often interact through shared pollinators, with effects ranging from positive (facilitation) to negative (competition). It remains unclear how this variation relates to variation in floral density, floral trait distinctiveness, and local environmental conditions. We studied the effect of grazer exclusion, a proposed local management strategy, on pollinator-mediated plant-plant interactions in heavily degraded alpine meadows of the Qinghai-Tibet Plateau.

2. We studied the effect of experimental grazer exclusion on plant reproduction and pollinator-mediated reproductive interactions quantified through pollen transfer networks. We also explored potential mechanisms of pollinator-mediated interspecific pollen transfer and its effect on plant reproductive fitness, including local floral abundance and floral trait distinctiveness among co-flowering species.

3. Grazer exclusion led to greater pollen deposition onto stigmas. The overall quantitative effects of pollinator-mediated interspecific interactions on the receptor species were mainly positive (facilitative) or neutral (with no detectable effect). The frequency of positive relative to negative quantitative effects for pairwise donor-receptor pairs tended to increase after grazer exclusion. Plants with floral traits similar to those of local ‘hub species’ appeared to benefit from pollinator-mediated interactions.

4. Our results suggest an overall positive effect of excluding grazers during the plant growing season on plant reproduction. Facilitative species interactions predominate in harsh environments such as the alpine, and the benefits of pollinator-mediated interactions among plants seemed to exceed the cost of conspecific pollen loss associated with pollinator sharing. This suggest that species invasions into alpine plant communities, an expected consequence of climate change, may not necessarily have negative effects on the reproduction of resident plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation. https://data.mendeley.com/datasets/mzrbcdtkz6/1

References

  • Albor C, Garcia-Franco JG, Parra-Tabla V, Diaz-Castelazoet C al., Arceo-Gomez G (2019) Taxonomic and functional diversity of the co-flowering community differentially affect Cakile edentula pollination at different spatial scales. J Ecol 107:2167–2181

    Article  Google Scholar 

  • Albor C, Arceo-Gomez G, Parra-Tabla V (2020) Integrating floral trait and flowering time distribution patterns help reveal a more dynamic nature of co-flowering community assembly processes. J Ecol 108:2221–2231

    Article  Google Scholar 

  • Anthelme F, Cavieres LA, Dangles O (2014) Facilitation among plants in alpine environments in the face of climate change. Front Plant Sci 5:387

    Article  PubMed  PubMed Central  Google Scholar 

  • Arceo-Gómez G, Ashman TL (2011) Heterospecific pollen deposition: does diversity alter the consequences? New Phytol 192:738–746

    Article  PubMed  Google Scholar 

  • Arceo-Gómez G, Ashman T-L (2014a) Coflowering community context influences female fitness and alters the adaptive value of flower longevity in Mimulus guttatus. Am Nat 183:E50–E63

    Article  PubMed  Google Scholar 

  • Arceo-Gómez G, Ashman T-L (2014b) Heterospecific pollen receipt affects self pollen more than outcross pollen: implications for mixed-mating plants. Ecology 95:2946–2952

    Article  Google Scholar 

  • Arceo-Gómez G, Ashman TL, Rafferty N (2016) Invasion status and phylogenetic relatedness predict cost of heterospecific pollen receipt: implications for native biodiversity decline. J Ecol 104:1003–1008

    Article  Google Scholar 

  • Arceo-Gómez G, Alonso C, Ashmanet TL al., Parra‐Tabla V (2018) Variation in sampling effort affects the observed richness of plant–plant interactions via heterospecific pollen transfer: implications for interpretation of pollen transfer networks. Am J Bot 105:1601–1608

    Article  PubMed  Google Scholar 

  • Armbruster WS (1995) The origins and detection of plant community structure: Reproductive versus vegetative processes. Folia Geobot Phytotx 30:483–497

    Article  Google Scholar 

  • Ashman TL, Arceo-Gómez G (2013) Toward a predictive understanding of the fitness costs of heterospecific pollen receipt and its importance in co-flowering communities. Am J Bot 100:1061–1070

    Article  PubMed  Google Scholar 

  • Ashman TL, Alonso C, Parra-Tablaet V, Arceo-Gomez alG (2020) Pollen on stigmas as proxies of pollinator competition and facilitation: complexities, caveats and future directions. Ann Bot 125:1003–1012

    Article  PubMed  PubMed Central  Google Scholar 

  • Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 101:221–223

    Google Scholar 

  • Bascompte J, Jordano P, Melianet CJ al., Olesen JM (2003) The nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci U S A 100:9383–9387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benadi G, Pauw A (2018) Frequency dependence of pollinator visitation rates suggests that pollination niches can allow plant species coexistence. J Ecol 106:1892–1901

    Article  Google Scholar 

  • Bergamo PJ, Wolowski M, Maruyama PK, Vizentin-Bugoniet J, Sazima alM (2018) Trait patterns across space and time suggest an interplay of facilitation and competition acting on neotropical hummingbird-pollinated plant communities. Oikos 127:1690–1700

    Article  Google Scholar 

  • Bergamo PJ, Streher NS, M. WolowskiM. Sazima et al (2020a) Pollinator-mediated facilitation is associated with floral abundance, trait similarity and enhanced community-level fitness. J Ecol 108:1334–1346

  • Bergamo PJ, Susin Streher N, Traveset A, M. WolowskiM. Sazima et al (2020b) Pollination outcomes reveal negative density-dependence coupled with interspecific facilitation among plants. Ecol Lett 23:129–139

  • Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, D. KikodzeB. J. Cook et al (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848

  • Carvalheiro LG, Biesmeijer JC, Benadi G, Frund J, Stang M, Bartomeus I, Kaiser-Bunbury CN, Baude M, Gomes SI, Merckx V, Baldock KC, Bennett AT, Boada R, Bommarco R, Cartar R, Chacoff N, Danhardt J, Dicks LV, Dormann CF, Ekroos J, Henson KS, Holzschuh A, Junker RR, Lopezaraiza-Mikel M, Memmott J, Montero-Castano A, Nelson IL, Petanidou T, Power EF, Rundlof M, Smith HG, Stout JC, Temitope K, Tscharntke T, Tscheulin T, M. VilaW. E. Kunin et al (2014) The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness. Ecol Lett 17:1389–1399

  • Chen H, Zhu Q, Peng C, Wu N, Wang Y, Fang X, Gao Y, Zhu D, Yang G, Tian J, Kang X, Piao S, Ouyang H, Xiang W, Luo Z, Jiang H, Song X, Zhang Y, Yu G, Zhao X, Gong P, T. YaoJ. Wu et al (2013) The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob Chang Biol 19:2940–2955

  • R Core Development Team, R (2019) R: A language and environment for statistical computing

  • Csardi G, Nepusz T (2006) The igraph software package for complex network research. Int j Complex syst 1695:1–9

    Google Scholar 

  • Fang Q, Huang SQ (2013) A directed network analysis of heterospecific pollen transfer in a biodiverse community. Ecology 94:1176–1185

    Article  PubMed  Google Scholar 

  • Fang Q, Huang SQ (2016) A paradoxical mismatch between interspecific pollinator moves and heterospecific pollen receipt in a natural community. Ecology 97:1970–1978

    Article  PubMed  Google Scholar 

  • Fang Q, Gao J, Huang WS et al (2019) Multi-year stigmatic pollen-load sampling reveals temporal stability in interspecific pollination of flowers in a subalpine meadow. Oikos 128:1739–1747

  • Feinsinger P (1987) Effects of plant species on each other’s pollination: is community structure influenced? Trends Ecol Evol 2:123–126

    Article  CAS  PubMed  Google Scholar 

  • Fenster CB, Reynolds RJ, Williams CW, Makowskyet R al., Dudash MR (2015) Quantifying hummingbird preference for floral trait combinations: the role of selection on trait interactions in the evolution of pollination syndromes. Evolution 69:1113–1127

    Article  PubMed  Google Scholar 

  • Gao EL, Wang YX, Bi C, Zhao CN et al (2021) Restoration of Degraded Alpine Meadows Improves Pollination Network Robustness and Function in the Tibetan Plateau. Front Ecol Evol 9

  • Gavini SS, Sáez A C. TurM. A. Aizen (2021) pollination success increases with plant diversity in high-andean communities. Sci Rep 11:22107

  • Ghazoul J (2006) Floral diversity and the facilitation of pollination. J Ecol 94:295–304

    Article  Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (2010) Climate change impacts in alpine environments. Geogr Compass 4:1133–1153

    Article  Google Scholar 

  • Harder LD, Aizen MA (2004) The functional significance of synchronous protandry in Alstroemeria aurea. Funct Ecol 18:467–474

    Article  Google Scholar 

  • Harris RB (2010) Rangeland degradation on the Qinghai-Tibetan plateau: a review of the evidence of its magnitude and causes. J Arid Environ 74:1–12

    Article  CAS  Google Scholar 

  • He Q, Bertness MD, Altieri AH (2013) Global shifts towards positive species interactions with increasing environmental stress. Ecol Lett 16:695–706

    Article  PubMed  Google Scholar 

  • Hegland SJ, Totland O (2012) Interactions for pollinator visitation and their consequences for reproduction in a plant community. Acta Oecol 43:95–103

    Article  Google Scholar 

  • Hegland SJ, Grytnes JA, Totland O (2009a) The relative importance of positive and negative interactions for pollinator attraction in a plant community. Ecol Res 24:929–936

    Article  Google Scholar 

  • Hegland SJ, Nielsen A, Lazaro A, A. L. BjerknesO. Totland et al (2009b) How does climate warming affect plant-pollinator interactions? Ecol Lett 12:184–195

  • Henneresse T, Wesselingh RA, Tyteca D (2017) Effects of floral display, conspecific density and rewarding species on fruit set in the deceptive orchid Orchis Militaris (Orchidaceae). Plant Ecol Evol 150:279–292

    Article  Google Scholar 

  • Hernandez-Castellano C, Rodrigo A, Gomez JM, Stefanescu C, Calleja JA, S. ReverteJ. Bosch et al (2020) A new native plant in the neighborhood: effects on plant-pollinator networks, pollination, and plant reproductive success. Ecology 101:e03046

  • Hong T, Santos GS, van Staal CR W. JiS. Lin (2023) mapping uncovered a multi-phase arc–back-arc system in the southern Beishan during the Permian. Natl Sci Rev 10:nwac204

  • Inouye DW (2020) Effects of climate change on alpine plants and their pollinators. Ann N Y Acad Sci 1469:26–37

    Article  PubMed  Google Scholar 

  • Iseli E, Chisholm C, Lenoir J, Haider S, Seipel T, Barros A, Hargreaves AL, Kardol P (2023) Rapid upwards spread of non-native plants in mountains across continents. Nat Ecol Evol 7:405–413 Lembrechtset al.K. McDougall

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson SD, Hobbhahn N (2010) Generalized pollination, floral scent chemistry, and a possible case of hybridization in the African orchid Disa fragrans. S Afr J Bot 76:739–748

    Article  CAS  Google Scholar 

  • Kaarlejärvi E, Eskelinen A, Olofsson J (2017) Herbivores rescue diversity in warming tundra by modulating trait-dependent species losses and gains. Nat Commun 8:419

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaiser-Bunbury CN, Mougal J, Whittington AE, Valentin T, Gabriel R, J. M. OlesenN. Bluthgen et al (2017) Ecosystem restoration strengthens pollination network resilience and function. Nature 542:223–227

  • Kearns C, Inouye D (1993) Techniques for pollination biologists. Univ. Press of Colorado Niwot Colorado

  • Klein JA, Harte J, Zhao XQ (2007) Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau. Ecol Appl 17:541–557

    Article  PubMed  Google Scholar 

  • Lázaro A, Jakobsson A, Totland O (2013) How do pollinator visitation rate and seed set relate to species’ floral traits and community context? Oecologia 173:881–893

    Article  PubMed  Google Scholar 

  • Lázaro A, Tscheulin T, Devalez J, Nakas G, Stefanaki A, Hanlidouet E al., Petanidou T (2016) Moderation is best: effects of grazing intensity on plant–flower visitor networks in Mediterranean communities. Ecol Appl 26:796–807

    Article  PubMed  Google Scholar 

  • Lázaro A, Gómez-Martínez C, Alomar D, González‐Estévez MA A. TravesetN. Rafferty (2020) linking species‐level network metrics to flower traits and plant fitness. J Ecol 108:1287–1298

  • Li W, Cao WX, Wang JL, Li XL, Shi CL et al (2017) Effects of grazing regime on vegetation structure, productivity, soil quality, carbon and nitrogen storage of alpine meadow on the Qinghai-Tibetan Plateau. Ecol Eng 98:123–133

  • Lu X, Kelsey KC, Yan Y, Sun J, Wang X, Chenget G al.J. C., Neff (2017) Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai-Tibetan Plateau: a synthesis. Ecosphere 8:e01656

  • Maruyama PK, Oliveira GM, Ferreira C, Oliveira B et al (2013) Pollination syndromes ignored: importance of non-ornithophilous flowers to Neotropical savanna hummingbirds. Naturwissenschaften 100:1061–1068

  • Memmott J, Waser NM, Price MV (2004) Tolerance of pollination networks to species extinctions. Proc Royal Soc B 271:2605–2611

    Article  Google Scholar 

  • Montgomery BR, Rathcke BJ (2012) Effects of floral restrictiveness and stigma size on heterospecific pollen receipt in a prairie community. Oecologia 168:449–458

    Article  PubMed  Google Scholar 

  • Morales CL, Traveset A (2008) Interspecific pollen transfer: Magnitude, prevalence and consequences for plant fitness. Crit Rev Plant Sci 27:221–238

    Article  CAS  Google Scholar 

  • Muchhala N, Thomson JD (2012) Interspecific competition in pollination systems: costs to male fitness via pollen misplacement. Funct Ecol 26:476–482

    Article  Google Scholar 

  • Muchhala N, Johnsen S, Smith SD (2014) Competition for hummingbird pollination shapes flower color variation in Andean solanaceae. Evolution 68:2275–2286

    PubMed  Google Scholar 

  • Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256

    Article  Google Scholar 

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326

    Article  Google Scholar 

  • Opedal Ø (2021) A functional view reveals substantial predictability of pollinator-mediated selection. JPE 30:273–288

    Article  Google Scholar 

  • Opedal OH, Hegland SJ (2020) Using hierarchical joint models to study reproductive interactions in plant communities. J Ecol 108:485–495

    Article  Google Scholar 

  • Parra-Tabla V, Arceo‐Gómez G (2021) Impacts of plant invasions in native plant-pollinator networks. New Phytol 230:2117–2128

    Article  PubMed  Google Scholar 

  • Parra-Tabla V, Alonso C, Ashman TL, Raguso RA, Albor C, Sosenski P, Carmona D, Arceo‐Gómezet G al., Heard M (2020) Pollen transfer networks reveal alien species as main heterospecific pollen donors with fitness consequences for natives. J Ecol 109:939–951

    Article  Google Scholar 

  • Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J (2012) Recent plant diversity changes on Europe’s mountain summits. B Erschbameret Al R F Calzado 336:353–355

    CAS  Google Scholar 

  • Pauw A (2013) Can pollination niches facilitate plant coexistence? Trends Ecol Evol 28:30–37

    Article  PubMed  Google Scholar 

  • Rosas-Guerrero V, Aguilar R, Marten-Rodriguez S, Ashworth L, Lopezaraiza-Mikel M J. M. BastidaM. Quesada (2014) a quantitative review of pollination syndromes: do floral traits predict effective pollinators? Ecol Lett 17:388–400

  • Sargent RD, Ackerly DD (2008) Plant–pollinator interactions and the assembly of plant communities. Trends Ecol Evol 23:123–130

    Article  PubMed  Google Scholar 

  • Schmid B, Nottebrock H, Esler KJ, Pagel J, Pauw A, Bohning-Gaese K F. M. SchurrM. Schleuning (2015) reward quality predicts effects of bird-pollinators on the reproduction of African Protea shrubs. Perspect Plant Ecol 17:209–217

  • Thomann M, Imbert E, Cheptou C et al (2013) Flowering plants under global pollinator decline. Trends Plant Sci 18:353–359

  • Tur C, Saez A, Travesetet A al., Aizen MA (2016) Evaluating the effects of pollinator-mediated interactions using pollen transfer networks: evidence of widespread facilitation in south Andean plant communities. Ecol Lett 19:576–586

    Article  CAS  PubMed  Google Scholar 

  • Vanbergen AJ, Woodcock BA, Gray A, Grant F, Telford A, Lambdon P, Chapman DS, Pywell RF M. S. HeardS. Cavers (2014) grazing alters insect visitation networks and plant mating systems. Funct Ecol 28:178–189

  • Vandelook F, Janssens SB, Gijbels P, Fischer E, Van den Ende W O. HonnayS. Abrahamczyk (2019) nectar traits differ between pollination syndromes in Balsaminaceae. Ann Bot 124:269–279

  • Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 85:183–206

    Article  PubMed  Google Scholar 

  • Violle C, Thuiller W, Mouquet N, Munoz F, Kraft NJB, Cadotte MW, S. W. LivingstoneD. Mouillot et al (2017) Functional Rarity: The Ecology of Outliers. Trends Ecol Evol 32:356–367

  • Wagner DL, Grames EM, Forister ML, Berenbaumet MR al., Stopak D (2021) Insect decline in the Anthropocene: death by a thousand cuts. Proc Natl Acad Sci U S A 118:e2023989118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YX, Gao EL, Hou M, Zhao J et al (2023) Pollen limitation and context-dependent alleviating mechanisms in a co-flowering alpine grassland community. Oikos:e09758

  • Wolowski M, Carvalheiro LG, Freitaset L al., Rafferty N (2017) Influence of plant-pollinator interactions on the assembly of plant and hummingbird communities. J Ecol 105:332–344

    Article  Google Scholar 

  • Xu CL, Wang ZW, Li ZG, Wanget L al., Han GD (2019) Grazing intensity and climate factors shape species abundance distribution by influencing different components of plant communities in a desert steppe. Ecol Res 34:730–742

    Article  Google Scholar 

  • Ye Z-M, Dai W-K, Jin X-F, Gituru RW, Yang Q-F et al (2014) Competition and facilitation among plants for pollination: can pollinator abundance shift the plant–plant interactions? Plant Ecol 215:3–13

  • Zhang T, Tang X, Fang Q (2021) Pollinator sharing among co-flowering plants mediates patterns of pollen transfer. Alp Bot 131:125–133

    Article  Google Scholar 

  • Zhao YH, Ren ZX, Lazaro A, Wang H, Bernhardt P, Li HD et al (2016) Floral traits influence pollen vectors’ choices in higher elevation communities in the Himalaya-Hengduan Mountains. BMC Ecol 16:26

Download references

Acknowledgements

We thank Jieyu Yang, Yizhi Qiu, Xiaoping Yan, Yan Ma, Hui Ma, Xiangnan Wu, Yuxian Wang and Shuyuan Wang for help in the field and lab, and Gerardo Arceo-Gómez for useful comments on previous drafts.

Funding

The authors declare they have no financial interests

Author information

Authors and Affiliations

Authors

Contributions

Scientific authorship: Bi Cheng, Zhao Zhigang and HM conceived the ideas and designed methodology. Zhao Zhigang received the funding. Bi Cheng, Gao Erliang, Yang Lili and Yang Tang performed field and laboratory work. Bi Cheng performed data processing and statistical analysis. Bi Cheng, Zhao Zhigang and Øystein H. Opedal led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Zhigang Zhao.

Ethics declarations

Funding and competing interests

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFC0504801), the Key Research Program of Gansu (20ZD7FA005), and the Key Natural Science Foundation of Gansu (22JR5RA133) to Zhao Zhigang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, C., Opedal, Ø.H., Yang, T. et al. Experimental grazer exclusion increases pollination reliability and influences pollinator-mediated plant-plant interactions in tibetan alpine meadows. Alp Botany (2024). https://doi.org/10.1007/s00035-024-00311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00035-024-00311-1

Keywords

Navigation