Skip to main content
Log in

Learning-Based Adaptive Estimation with Guaranteed Prescribed Performance for Nonlinear Sandwich System Subject to the Quantised Sensor

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

High-quality identification schemes are essential for controller design of nonlinear systems in the field of automatic control. In control communities, the prescribed performance technology has received wide attention as a promising methodology because of its quantitative description of the steady-state and transient performance of system control over the past several years. The improved transient performance of the parameter estimation is widely known to enable simplified controller design, reduce system regulation time, and prevent system divergence. However, in system identification communities, few studies on the transient performance of parameter identification have been published because of the difficulties in designing an error variable that reflects the transient performance of parameter identification. To address this problem, this study provides a solution by integrating the prescribed performance technique into the estimator design. In this study, we introduced an adaptively prescribed performance parameter identification for nonlinear sandwich systems subjected to quantitative observations. First, a low-pass filter and forcing variables are developed to construct an identification error expression. Subsequently, an improved prescribed performance function that characterises the error bound of parameter estimation is introduced. Second, the error transformation concept is used to obtain a new system by transforming the raw system such that constraint conditions are avoided. A novel adaptive law is proposed to guarantee original parameter identification using the prescribed performance. Finally, simulation and process examples are presented to illustrate finding results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. E.-W. Bai, Z. Cai, S. Dudley-Javorosk, R.K. Shields, Identification of a modified Wiener–Chammerstein system and its application in electrically stimulated paralyzed skeletal muscle modeling. Automatica 45, 736–743 (2009)

    Article  Google Scholar 

  2. G. Bottegal, H. Hjalmarsson, G. Pillonetto, A new kernel-based approach to system identification with quantized output data. Automatica 85, 145–152 (2017)

    Article  MathSciNet  Google Scholar 

  3. A. Brouri, Wiener–Hammerstein nonlinear system identification using spectral analysis. Int. J. Robust Nonlinear Control 32, 6184–6204 (2022)

    Article  MathSciNet  Google Scholar 

  4. Q. Cao, Y. Tan, R. Dong, W. Shen, A modeling method of electromagnetic micromirror in random noisy environment. IEEE Trans. Syst. Man Cybernet. Syst. 50, 2578–2587 (2020)

    Article  Google Scholar 

  5. M. Casini, A. Garulli, A. Vicino, Input design in worst-case system identification with quantized measurements. Automatica 48, 2997–3007 (2012)

    Article  MathSciNet  Google Scholar 

  6. J. Chen, F. Ding, Q. Zhu, Y. Liu, Interval error correction auxiliary model based gradient iterative algorithms for multirate arx models. IEEE Trans. Autom. Control 65, 4385–4392 (2020)

    Article  MathSciNet  Google Scholar 

  7. J. Chen, Y. Liu, F. Ding, Q. Zhu, Gradient-based particle filter algorithm for an ARX model with nonlinear communication output. IEEE Trans. Syst. Man Cybernet. Syst. 50, 2198–2207 (2020)

    Article  Google Scholar 

  8. Q. Chen, X. Ren, J. Na, D. Zheng, Adaptive robust finite-time neural control of uncertain PMSM servo system with nonlinear dead zone. Neural Comput. Appl. 28, 3725–3736 (2017)

    Article  Google Scholar 

  9. B. Cho, S.-W. Kim, S. Shin, J.-H. Oh, H.-S. Park, H.-W. Park, Energy-efficient hydraulic pump control for legged robots using model predictive control. IEEE/ASME Trans. Mechatron. 28, 3–14 (2023)

    Article  Google Scholar 

  10. F. Ding, L. Xu, X. Zhang, Y. Zhou, Filtered auxiliary model recursive generalized extended parameter estimation methods for Box–Jenkins systems by means of the filtering identification idea. Int. J. Robust Nonlinear Control 33, 5510–5535 (2023)

    Article  MathSciNet  Google Scholar 

  11. F. Ding, Least squares parameter estimation and multi-innovation least squares methods for linear fitting problems from noisy data. J. Comput. Appl. Math. 426, 115107 (2023)

    Article  MathSciNet  Google Scholar 

  12. J. Ding, W. Zhang, J. Zhao, A kernel-based identification approach for a class of nonlinear systems with quantized output data. Digital Signal Process. 128, 103595 (2022)

    Article  Google Scholar 

  13. A.J.J. Duarte, T.L.M. Santos, J.M. Araújo, A receptance-based vibration control with dead-zone compensation for systems with input delay. Mech. Syst. Signal Process. 178, 109299 (2022)

    Article  Google Scholar 

  14. J. Figwer, Hammerstein system identification with multisine excitations—quantized low-power observations case, in 2013 18th International Conference on Methods & Models in Automation & Robotics (MMAR), pp. 127–131 (2013)

  15. E. Garcia, D.W. Casbeer, Z.E. Fuchs, M. Pachter, Cooperative missile guidance for active defense of air vehicles. IEEE Trans. Aerosp. Electron. Syst. 54, 706–721 (2018)

    Article  Google Scholar 

  16. A. Gersho, R.M. Gray, Vector Quantization and Signal Compression (Springer, Berlin, 2012)

    Google Scholar 

  17. G. Giordano, S. Gros, J. Sjöberg, An improved method for Wiener–Hammerstein system identification based on the fractional approach. Automatica 94, 349–360 (2018)

    Article  MathSciNet  Google Scholar 

  18. G.C. Goodwin, K.S. Sin, Adaptive Filtering Prediction and Control (Prentice-Hall, Englewood Cliffs, 1984)

    Google Scholar 

  19. J. Guo, L.Y. Wang, G. Yin, Y. Zhao, J.-F. Zhang, Identification of wiener systems with quantized inputs and binary-valued output observations. Automatica 78, 280–286 (2017)

    Article  MathSciNet  Google Scholar 

  20. J. Guo, Y. Zhao, Identification for Wiener–Hammerstein systems under quantized inputs and quantized output observations. Asian J. Control 23, 118–127 (2021)

    Article  MathSciNet  Google Scholar 

  21. Q. He, G.G. Yin et al., System Identification Using Regular and Quantized Observations: Applications of Large Deviations Principles (Springer, Berlin, 2013)

    Book  Google Scholar 

  22. J. Hou, H. Su, C. Yu, F. Chen, P. Li, Bias-correction errors-in-variables Hammerstein model identification. IEEE Trans. Ind. Electron. 70, 7268–7279 (2023)

    Article  Google Scholar 

  23. X. Li, Z. Huang, J. Tian et al., State-of-charge estimation tolerant of battery aging based on a physics-based model and an adaptive cubature Kalman filter. Energy 220, 119767 (2021)

    Article  Google Scholar 

  24. L. Li, F. Wang, H. Zhang et al., A novel recursive learning estimation algorithm of wiener systems with quantized observations. ISA Trans. 112, 23–34 (2021)

    Article  Google Scholar 

  25. L. Li, J. Zhang, F. Wang, H. Zhang et al., Binary-valued identification of nonlinear Wiener–Hammerstein systems using adaptive scheme. IEEE Trans. Instrum. Meas. 72, 1–10 (2023)

    Google Scholar 

  26. L. Li, H. Zhang, J. Zhang et al., A new adaptive identification framework for nonlinear multi-input multi-output systems under colored noise. Appl. Math. Model. 103, 105–121 (2022)

    Article  MathSciNet  Google Scholar 

  27. L. Li, J. Zhang, H. Zhang et al., Parameter estimation for a controlled autoregressive autoregressive moving average system based on a recursive framework. Appl. Math. Model. 113, 188–205 (2023)

    Article  MathSciNet  Google Scholar 

  28. H. Liang, L. Zhang, H.R. Karimi, Q. Zhou, Fault estimation for a class of nonlinear semi-Markovian jump systems with partly unknown transition rates and output quantization. Int. J. Robust Nonlinear Control 28, 5962–5980 (2018)

    Article  MathSciNet  Google Scholar 

  29. Y. Liu, E.-W. Bai, Iterative identification of Hammerstein systems. Automatica 43, 346–354 (2007)

    Article  MathSciNet  Google Scholar 

  30. Q. Liu, F. Ding, Gradient-based recursive parameter estimation for a periodically nonuniformly sampled-data Hammerstein–Wiener system based on the key-term separation. Int. J. Adapt. Control Signal Process. 35, 1970–1989 (2021)

    Article  MathSciNet  Google Scholar 

  31. L. Ljung, System Identification: Theory for the User, 2nd edn. (Prentice-Hall, Englewood Cliffs, 1999)

    Google Scholar 

  32. T. Lou, Z. Yue, Y. Jiao et al., A hybrid strategy-based GJO algorithm for robot path planning. Expert Syst. Appl. 238, 121975 (2024)

    Article  Google Scholar 

  33. F. Mehdifar, C.P. Bechlioulis, F. Hashemzadeh, M. Baradarannia, Prescribed performance distance-based formation control of multi-agent systems. Automatica 119, 109086 (2020)

    Article  MathSciNet  Google Scholar 

  34. A. Naitali, F. Giri, Wiener–Hammerstein system identification-an evolutionary approach. Int. J. Syst. Sci. 47, 45–61 (2016)

    Article  MathSciNet  Google Scholar 

  35. D. Piga, M. Forgione, M. Mejari, Deep learning with transfer functions: new applications in system identification. IFAC-PapersOnLine 54, 415–420 (2021)

    Article  Google Scholar 

  36. M. Pouliquen, E. Pigeon, O. Gehan, A. Goudjil, R. Auber, Impulse response identification from input/output binary measurements. Automatica 123, 109307 (2021)

    Article  MathSciNet  Google Scholar 

  37. R.S. Risuleo, G. Bottegal, H. Hjalmarsson, Identification of linear models from quantized data: a midpoint-projection approach. IEEE Trans. Autom. Control 65, 2801–2813 (2020)

    Article  MathSciNet  Google Scholar 

  38. S. Sui, C.L.P. Chen, S. Tong, S. Feng, Finite-time adaptive quantized control of stochastic nonlinear systems with input quantization: a broad learning system based identification method. IEEE Trans. Ind. Electron. 67, 8555–8565 (2020)

    Article  Google Scholar 

  39. W. Tai, A. Zhao, T. Guo, J. Zhou, Delay-Independent and Dependent \({\cal{L} }_{2}-{\cal{L} }_{\infty }\) Filter Design for Time-Delay Reaction-Diffusion Switched Hopfield Networks. Circuits Syst. Signal Process. 42, 173–198 (2023)

    Article  Google Scholar 

  40. G. Tao, F.L. Lewis, Adaptive Control of Nonsmooth Dynamic Systems (Springer, Berlin, 2001)

    Book  Google Scholar 

  41. T. Wang, X. Li, J. Guo, Y. Zhao, Identification of ARMA models with binary-valued observations. Automatica 149, 110832 (2023)

    Article  MathSciNet  Google Scholar 

  42. X. Wang, H.R. Karimi, M. Shen, D. Liu, L.-W. Li, J. Shi, Neural network-based event-triggered data-driven control of disturbed nonlinear systems with quantized input. Neural Netw. 156, 152–159 (2022)

    Article  Google Scholar 

  43. L.Y. Wang, G.G. Yin, J.-F. Zhang, Y. Zhao, System Identification with Quantized Observations (Springer-Birkhäuser, Boston, 2010)

    Book  Google Scholar 

  44. D. Wang, S. Zhang, M. Gan, J. Qiu, A novel EM identification method for Hammerstein systems with missing output data. IEEE Trans. Ind. Inf. 16, 2500–2508 (2020)

    Article  Google Scholar 

  45. B. Xin, S. Cheng, Q. Wang, J. Chen, F. Deng, Fixed-time prescribed performance consensus control for multi-agent systems with non-affine faults. IEEE Trans. Fuzzy Syst. (2023). https://doi.org/10.1109/TFUZZ.2023.3255889

    Article  Google Scholar 

  46. S. Yang, H. Wang, H. Li, M. Guo, J. Wang, Online identification of nonlinear quantization system with non-uniformly sampled data, in 2021 China Automation Congress (CAC), pp. 7–12 (2021)

  47. J. Zhang, C. Huang, M. Chow et al., A data-model interactive remaining useful life prediction approach of lithium-ion batteries based on PF-BiGRU-TSAM. IEEE Trans. Ind. Inf. 20, 1144–1154 (2023)

    Article  Google Scholar 

  48. J. Zhang, Y. Jiang, H. Luo et al., Remaining useful life prediction of lithium-ion battery with adaptive noise estimation and capacity regeneration detection. IEEE/ASME Trans. Mechatron. 28, 632–643 (2023)

    Article  Google Scholar 

  49. L. Zhang, Y. Zhao, L. Guo, Identification and adaptation with binary-valued observations under non-persistent excitation condition. Automatica 138, 110158 (2022)

    Article  MathSciNet  Google Scholar 

  50. T. Zhang, L. Xie, F. Ding, Systems identification of Hammerstein nonlinear systems for dual-rate sampling and output signal quantized, in 2009 Chinese Control and Decision Conference, pp. 785–790 (2009)

  51. J. Zhang, J. Tian, A.M. Alcaide et al., Lifetime extension approach based on the Levenberg–CMarquardt neural network and power routing of DC-CDC converters. IEEE Trans. Power Electron. 38, 10280–10291 (2023)

    Article  Google Scholar 

  52. Y. Zhao, J.-F. Zhang, L.Y. Wang, G.G. Yin, Identification of Hammerstein systems with quantized observations. SIAM J. Control. Optim. 48, 4352–4376 (2010)

    Article  MathSciNet  Google Scholar 

  53. Z. Zhou, Y. Tan, X. Liu, State estimation of dynamic systems with sandwich structure and hysteresis. Mech. Syst. Signal Process. 126, 82–97 (2019)

    Article  Google Scholar 

  54. T. Zong, J. Li, G. Lu, Identification of Hammerstein–Wiener systems with state-space subsystems based on the improved PSO and GSA algorithm. Circuits Syst. Signal Process. 42, 2755–2781 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Henan under Grant Nos. 242300420292, 222300420583, and the Maker Space Incubation Project under Grant No. 2023ZCKJ102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linwei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Li, L., Lou, T. et al. Learning-Based Adaptive Estimation with Guaranteed Prescribed Performance for Nonlinear Sandwich System Subject to the Quantised Sensor. Circuits Syst Signal Process (2024). https://doi.org/10.1007/s00034-024-02676-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00034-024-02676-4

Keywords

Navigation