Skip to main content
Log in

Energy Efficient Ternary Multi-trit Multiplier Design Using Novel Adders

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Ternary logic has received substantial attention over binary logic due to diminished delay, reduced power consumption, and minimized area requirements. Carbon Nanotube Field Effect Transistors (CNTFETs) are mostly preferred for the implementation of ternary logic because of their ability to achieve multi-threshold transistors. This paper presents an energy-efficient CNTFET-based 3-trit Wallace tree multiplier design using a novel 4-input ternary adder (called 4-ITA), full-adder, and half-adder. We have proposed half-adder, full-adder, and 1-trit multipliers using a new 3:1 multiplexer module (called MUX-2) that significantly enhances energy efficiency within our ternary multiplier design. This multiplexer, leveraging high and standard threshold voltage devices, greatly optimizes our ternary multiplier’s power consumption and computational speed. Furthermore, we reduced power dissipation by minimizing switching transitions within the signal generation circuits of both MUX-2 and the arithmetic modules. All the arithmetic designs were designed using the 45 nm CNTFET technology. Results prove that the 3-trit multiplier achieved 40% lesser power consumption and a 51% power delay product improvement compared to the best literature design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data availability is not applicable.

References

  1. A. Akturk, G. Pennington, N. Goldsman, A. Wickenden, Electron transport and velocity oscillations in a carbon nanotube. IEEE Trans. Nanotechnol. 6, 469–474 (2007). https://doi.org/10.1109/TNANO.2007.896968

    Article  Google Scholar 

  2. W. Alexander, The ternary computer. Electron. Power 10, 36–39 (1964). https://doi.org/10.1049/ep.1964.0037

    Article  Google Scholar 

  3. J.M. Aljaam, R.A. Jaber, S.A. Al-Maadeed, Novel ternary adder and multiplier designs without using decoders or encoders. IEEE Access 9, 56726–56735 (2021). https://doi.org/10.1109/ACCESS.2021.3072567

    Article  Google Scholar 

  4. P.C. Balla, A. Antoniou, Low power dissipation MOS ternary logic family. IEEE J. Solid State Circuits 19, 739–749 (1984). https://doi.org/10.1109/JSSC.1984.1052216

    Article  Google Scholar 

  5. F. Behbahani, A. Behrad, M.H. Moaiyeri, An ultra-fast and energy-efficient CNTFET-based image corner detection hardware for real-time image processing applications. AEU Int. J. Electron. Commun. 175, 155099 (2024). https://doi.org/10.1016/j.aeue.2023.155099

    Article  Google Scholar 

  6. A. Chaudhry, M.J. Kumar, Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review. IEEE Trans. Device Mater. Reliab. 4, 99–109 (2004). https://doi.org/10.1109/TDMR.2004.824359

    Article  Google Scholar 

  7. D. Dass, R. Prasher, R. Vaid, Characterization of Carbon Nanotube Field Effect Transistor Using Simulation Approach, in Physics of Semiconductor Devices. Environmental Science and Engineering. (Springer, Cham, 2014), pp.585–588

    Chapter  Google Scholar 

  8. J. Deng, H.S.P. Wong, A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—part I: model of the intrinsic channel region. IEEE Trans. Electron Devices 54, 3186–3194 (2007). https://doi.org/10.1109/TED.2007.909030

    Article  Google Scholar 

  9. J. Deng, H.S.P. Wong, A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—part II: full device model and circuit performance benchmarking. IEEE Trans. Electron Devices 54, 3195–3205 (2007). https://doi.org/10.1109/TED.2007.909043

    Article  Google Scholar 

  10. M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes Synthesis, Structure, Properties, and Applications, 1st edn. (Springer, Berlin, 2001)

    Google Scholar 

  11. G. Hills et al., Understanding energy efficiency benefits of carbon nanotube field-effect transistors for digital VLSI. IEEE Trans. Nanotechnol. 17, 1259–1269 (2018). https://doi.org/10.1109/TNANO.2018.2871841

    Article  Google Scholar 

  12. R.A. Jaber, H. Bazzi, A. Haidar et al., 1-trit ternary multiplier and adder designs using ternary multiplexers and unary operators, in 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), Zallaq, Bahrain (2021). https://doi.org/10.1109/3ICT53449.2021.9581366

  13. R.A. Jaber, A.M. Haidar, A. Kassem, F. Zahoor, Ternary full adder designs employing unary operators and ternary multiplexers. Micromachines 14, 1–19 (2023). https://doi.org/10.3390/mi14051064

    Article  Google Scholar 

  14. M.K.Q. Jooq, M.H. Moaiyeri, K. Tamersit, Ultra-compact ternary logic gates based on negative capacitance carbon nanotube FETs. IEEE Trans. Circuits Syst. II Express Briefs 68(6), 2162–2166 (2021). https://doi.org/10.1109/TCSII.2020.3047265

    Article  Google Scholar 

  15. P. Keshavarzian, R. Sarikhani, A Novel CNTFET-based ternary full adder. Circuits Syst. Signal Process. 33, 665–679 (2014). https://doi.org/10.1007/s00034-013-9672-6

    Article  Google Scholar 

  16. N.A. Khosroshahi, M. Dehyadegari, F. Razaghian, A high-efficiency Wallace tree based multi-trit multiplier in CNTFET technology. Int. J. Electron. 110(6), 1137–1155 (2023). https://doi.org/10.1080/00207217.2022.2068665

    Article  Google Scholar 

  17. S. Lin, Y.B. Kim, F. Lombardi, CNTFET-based design of ternary logic gates and arithmetic circuits. IEEE Trans. Nanotechnol. 10, 217–225 (2011). https://doi.org/10.1109/TNANO.2009.2036845

    Article  Google Scholar 

  18. M.H. Moaiyeri, R.F. Mirzaee, K. Navi et al., Efficient CNTFET-based ternary full adder cells for nanoelectronics. Nano Micro Lett. 3, 43–50 (2011). https://doi.org/10.1007/BF03353650

    Article  Google Scholar 

  19. Mukaidono, Regular ternary logic functions—ternary logic functions suitable for treating ambiguity. IEEE Trans. Comput. (1986). https://doi.org/10.1109/TC.1986.1676738

    Article  Google Scholar 

  20. S.L. Murotiya, A. Gupta, A novel design of ternary full adder using CNTFETs. Arab. J. Sci. Eng. 39, 7839–7846 (2014). https://doi.org/10.1007/s13369-014-1350-x

    Article  Google Scholar 

  21. A. Raychowdhury, K. Roy, Carbon-nanotube-based voltage-mode multiple-valued logic design. IEEE Trans. Nanotechnol. 4, 168–179 (2005). https://doi.org/10.1109/TNANO.2004.842068

    Article  Google Scholar 

  22. S.K. Sahoo, G. Akhilesh, R. Sahoo, M. Muglikar, High-performance ternary adder using CNTFET. IEEE Trans. Nanotechnol. 16, 368–374 (2017). https://doi.org/10.1109/TNANO.2017.2649548

    Article  Google Scholar 

  23. S.K. Sahoo, G. Akhilesh, R. Sahoo, Design of a High performance carry generation circuit for ternary full adder using CNTFET, in 2017 IEEE International Symposium on Nanoelectronic and Information Systems (iNIS), Bhopal, India (2017). https://doi.org/10.1109/iNIS.2017.19

  24. H. Sirugudi, S. Gadgil, C. Vudadha, A novel low power ternary multiplier design using CNFETs, in 2020 33rd International Conference on VLSI Design and 2020 19th International Conference on Embedded Systems (VLSID), Bangalore, India (2020). https://doi.org/10.1109/VLSID49098.2020.00022.

  25. K. Sridharan, B. Srinivasu, V. Pudi, Low-Complexity Arithmetic Circuit Design in Carbon Nanotube Field Effect Transistor Technology, 1st edn. (Springer, Cham, 2020)

    Book  Google Scholar 

  26. T. Siddharth, S. Gadgil, C. Vudadha, Design of CNTFET-based Ternary Logic circuits using Low power Encoder, in 2022 IEEE International Symposium on Smart Electronic Systems (iSES), Warangal, India (2022). https://doi.org/10.1109/iSES54909.2022.00038

  27. W.J. Townsend, E.E. Swartzlander Jr, J.A. Abraham, A comparison of Dadda and Wallace multiplier delays, in Proc. SPIE 5205, Advanced Signal Processing Algorithms, Architectures, and Implementations XIII, San Diego, California, United States (2003). https://doi.org/10.1117/12.507012

  28. A.S. Vidhyadharan, S. Vidhyadharan, A novel ultra-low-power CNTFET and 45 nm CMOS based ternary SRAM. Microelectron. J. 111, 1–8 (2021). https://doi.org/10.1016/j.mejo.2021.105033

    Article  Google Scholar 

  29. A.S. Vidhyadharan, S. Vidhyadharan, Mux based ultra-low-power ternary adders and multiplier implemented with CNFET and 45 nm MOSFETs. Int. J. Electron. 109, 58–82 (2022). https://doi.org/10.1080/00207217.2021.1908616

    Article  Google Scholar 

  30. C.S. Wallace, A suggestion for a fast multiplier. IEEE Trans. Electron. Comput. (1964). https://doi.org/10.1109/PGEC.1964.263830

    Article  Google Scholar 

  31. J. Yoon, S. Baek, S. Kim, S. Kang, Optimizing ternary multiplier design with fast ternary adder. IEEE Trans. Circuits Syst. II Express Briefs 70, 766–770 (2023). https://doi.org/10.1109/TCSII.2022.3210282

    Article  Google Scholar 

  32. A. Yousefi, N. Eslami, M.H. Moaiyeri, A reliable and energy-efficient nonvolatile ternary memory based on hybrid FinFET/RRAM technology. IEEE Access 10, 105040–105051 (2022). https://doi.org/10.1109/ACCESS.2022.3211562

    Article  Google Scholar 

  33. P. Zhang, C. Qiu, Z. Zhang et al., Performance projections for ballistic carbon nanotube FinFET at circuit level. Nano Res. 9, 1785–1794 (2016). https://doi.org/10.1007/s12274-016-1071-4

    Article  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

AV: Conceptualization, Methodology, Analysis, Writing—Orginal Draft. SEA: Resources, Validation, Writing—Review & Editing. SG: Supervision, Resources, Validation, Writing—Review & Editing.

Corresponding author

Correspondence to S. Gurunarayanan.

Ethics declarations

Conflict of interest

No competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vendhan, A., Ahmed, S.E. & Gurunarayanan, S. Energy Efficient Ternary Multi-trit Multiplier Design Using Novel Adders. Circuits Syst Signal Process (2024). https://doi.org/10.1007/s00034-024-02659-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00034-024-02659-5

Keywords

Navigation