Skip to main content
Log in

Grounded and Floating Series-Type Lossy Capacitance and Inductance Simulators Using VDIBA(s)

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This communication introduces new configurations of series-type grounded/floating R-C and R-L simulator circuits. The grounded series R-C circuit makes use of a single voltage differencing inverted buffered amplifier (VDIBA), in addition to one resistor and one grounded capacitor. The capacitance of the circuit can be controlled independently through a resistor without requiring any passive component matching constraints. The proposed R-L circuit uses of single VDIBA in conjunction with one capacitor and one grounded resistor, and the realized inductance can be adjusted using a grounded resistor. A notable feature of the proposed R-C and R-L circuits is that, by adding one more VDIBA, they can be transformed into a floating series R-C and R-L simulator circuits. The usability of the proposed circuits in control systems and analog systems is considered. The impact of non-idealities of VDIBA on the proposed circuits is investigated. The functionality of the presented circuits is validated using a CMOS VDIBA implemented using 0.18 µm TSMC technology parameters. Experimental results of the application examples realized using presented circuits are also provided using a VDIBA realized with commercially available ICs to corroborate the theoretical propositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig.19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Data availability

We hereby confirm that our manuscript does not have any additional data beyond what is already contained in the manuscript. However, if any reader is interested in having the circuit files to verify any of the results, the same can be obtained from the authors on request.

References

  1. A. Abaci, E. Yuce, Single DDCC− based simulated floating inductors and their applications. IET Circuits Devices Syst. 14(6), 796–804 (2020)

    Article  Google Scholar 

  2. M.T. Abuelma’atti, New grounded immittance function simulators using single current feedback operational amplifier. Analog Integr. Circuits Signal Process. 71, 95–100 (2012)

    Article  Google Scholar 

  3. M.T. Abuelma’atti, S.K. Dhar, Z.J. Khalifa, New two-CFOA-based floating immittance simulators. Analog Integr. Circuits Signal Process 91, 479–489 (2017)

    Article  Google Scholar 

  4. D. Agrawal, S. Maheshwari, Electronically tunable grounded immittance simulators using an EX-CCCII. Int. J. Electron. 107(10), 1625–1648 (2020)

    Article  Google Scholar 

  5. H. Alpaslan, E. Yuce, Inverting CFOA based lossless and lossy grounded inductor simulators. Circuits Syst. Signal Process. 34(10), 3081–3100 (2015)

    Article  Google Scholar 

  6. H. Alpaslan, E. Yuce, Modified current follower-based immittance function simulators. Int. J. Electron. 104(12), 1974–1991 (2017)

    Google Scholar 

  7. K. Bhardwaj, M. Srivastava, Compact floating dual memelement emulator employing VDIBA and OTA: a novel realization. Circuits Systems Signal Process. 41(11), 5933–5967 (2022)

    Article  Google Scholar 

  8. D.R. Bhaskar, R. Senani, Synthetic floating inductors realized with only two current feedback op-amps. Am. J. Electrical Electron. Eng. 3(4), 88–92 (2015)

    Google Scholar 

  9. D. R. Bhaskar, R. Senani. Simulation of a floating inductance: a new two-CFOA-based configuration, In: Proc. 5th Int. Conf. Computational Intelligence, Modelling and Simulation, Seoul, South Korea, 2013, pp. 381– 383

  10. D. Biolek, R. Senani, V. Biolkova, Z. Kolka, Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 17(4), 15–32 (2008)

    Google Scholar 

  11. O. Channumsin, T. Pukkalanun, W. Tangsrirat, Electronically tunable floating lossy series-type inductance simulator using VDBAs, in Proc. 8th Int. Conf. Informatics, Environment, Energy and Applications (IEEA), Osaka, Japan, 2019, pp. 204–207.

  12. M. Dogan, E. Yuce, Supplementary single active device based grounded immittance function simulators. AEU-International Journal of Electronics and Communications 94, 311–321 (2018)

    Google Scholar 

  13. M. Faseehuddin, S. Shireen, N. Herencsar, W. Tangsrirat, Novel FDNR, FDNC and lossy inductor simulators employing second generation voltage conveyor (VCII). Int. J. Numer. Modelling: Electronic Networks, Devices and Fields. 36(5), 3100 (2023)

    Article  Google Scholar 

  14. M. Faseehuddin, J. Sampe, S. Shireen, S.H. Md Ali, Minimum passive components based lossy and lossless inductor simulators employing a new active block. AEU-Int. J. Electron. Commun 82, 226–240 (2017)

    Article  Google Scholar 

  15. N. Herencsar, O. Cicekoglu, R. Sotner, J. Koton, K. Vrba, New resistorless tunable voltage-mode universal filter using single VDIBA. Analog Integr. Circ. Sig. ProcessIntegr. Circ. Sig. Process 76, 251–260 (2013)

    Article  Google Scholar 

  16. M. Incekaraoglu, U. Çam, Realization of series and parallel RL and CD impedances using single differential voltage current conveyor. Analog Integr. Circ. Sig. ProcessIntegr. Circ. Sig. Process 43, 101–104 (2005)

    Article  Google Scholar 

  17. W. Jaikla, R. Sotner, F. Khateb, Design and analysis of floating inductance simulators using VDDDAs and their applications. Int. J. Electron. Commun. (AEU) 112, 152937 (2019)

    Article  Google Scholar 

  18. F. Kaçar, A. Yeşil, S. Minaei, H. Kuntman, Positive/negative lossy/lossless grounded inductance simulators employing single VD and only two passive elements. AEU-Int. J. Electron. Commun. 68(1), 73–78 (2014)

    Article  Google Scholar 

  19. F. Kacar, H. Kuntman, CFOA-based lossless and lossy inductance simulators. Radioengineering 20(3), 627–631 (2011)

    Google Scholar 

  20. A. Kartci, N. Herencsar, K. Vrba, S. Minaei, Novel grounded capacitor-based resistorless tunable floating/grounded inductance simulator. In 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1–4. IEEE, 2016

  21. K. Khaw-Ngam, M. Kumngern, F. Khateb, Mixed-mode third-order quadrature oscillator based on single MCCFTA. Radioengineering 26(2), 522–535 (2017)

    Article  Google Scholar 

  22. W. Kulapong, W. Jaikla, S. Siripongdee, R. Sotner, P. Suwanjan, A. Chaichana, A new method to synthesise the sinusoidal oscillator based on series negative resistance-capacitance and its implementation using a single commercial IC, LT1228. Elektronika ir Elektrotechnika 29(3), 26–32 (2023)

    Article  Google Scholar 

  23. S. Kumari, M. Gupta, Design and analysis of tunable voltage differencing inverting buffered amplifier (VDIBA) with enhanced performance and its application in filters. Wireless Pers. Commun.Commun. 100, 877–894 (2018)

    Article  Google Scholar 

  24. H. Kuntman, M. Gülsoy, O. Çiçekoğlu, Actively simulated grounded lossy inductors using third generation current conveyors. Microelectron. J.. J. 31(4), 245–250 (2000)

    Article  Google Scholar 

  25. N. Likhitkitwoerakul, N. Roongmuanpha, W. Tangsrirat, DVTC-Based Series RL/RC Impedance Simulator. In 2021 9th International Electrical Engineering Congress (iEECON). 321–324 (2021)

  26. S.I. Liu, Y.S. Hwang, Realisation of RL and CD impedances using a current feedback amplifier and its applications. Electron. Lett. 30(5), 380–381 (1994)

    Article  ADS  Google Scholar 

  27. G. Mann, P. Kumar, D. R. Bhaskar, Single OTRA-Based Grounded Series Lossy Inductor Configuration. 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), pp. 1159–1163. IEEE, 2021.

  28. B. Metin, Supplementary inductance simulator topologies employing single DXCCII. Radioengineering 20(3), 614–618 (2011)

    Google Scholar 

  29. B. Metin, The advantages of floating serial RL simulators in ladder filter implementation. Electron. World 114(1863), 46–47 (2008)

    ADS  Google Scholar 

  30. S. Minaei, M. Yildiz, B. Metin, O. Cicekoglu, New active realizations of floating lossless inductance and R-L impedance simulators, 2nd Annual IEEE Northeast Workshop on Circuits Syst. (NEWCAS), Montreal, QC, Canada, 2004. pp. 313–316.

  31. S. Minaei, E. Yuce, Realization of tunable active floating inductance simulators. Int. J. Electron. 95(1), 27–37 (2008)

    Article  CAS  Google Scholar 

  32. P. Moonmuang, T. Pukkalanun, W. Tangsrirat, Floating/grounded series/parallel RL, RC and LC immittance simulators employing VDTAs and only two grounded passive elements. AEU-Int. J. Electron. Commun. 145, 154095 (2022)

    Article  Google Scholar 

  33. P. Moonmuang, M. Faseehuddin, T. Pukkalanun, N. Herencsar, W. Tangsrirat, VDTA-based floating/grounded series/parallel RL and RC immittance simulators with a single grounded capacitor. AEU-Int. J. Electron. Commun. 160, 154502 (2023)

    Article  Google Scholar 

  34. P. Moonmuang, T. Pukkalanun, W. Tangsrirat, VDBA-based series RC impedance simulator using single grounded capacitor. International Conference on Engineering, Applied Sciences, and Technology (ICEAST) IEEE (2018)

  35. P. Moonmuang, W. Tangsrirat, Single VDTA-based tunable floating lossy inductance simulation circuits. IETE J. Res. 69(5), 2549–2566 (2023)

    Article  Google Scholar 

  36. N.S. Nise, Control systems engineering (John Wiley & Sons, 2020)

    Google Scholar 

  37. U.C. Oruçoğlu, E. Özer, F. Kaçar, VDIBA-Based Current-Mode PID Controller Desi̇gn. J. Circuits Syst. Comput. 32(17), 2350288 (2023)

    Article  Google Scholar 

  38. D. Ozenli, E. Alaybeyoglu, H. Kuntman, A tunable lossy grounded capacitance multiplier circuit based on VDTA for the low frequency operations. Analog Integr. Circ. Sig. ProcessIntegr. Circ. Sig. Process 113(2), 163–170 (2022)

    Article  Google Scholar 

  39. E. Özer, M.E. Başak, F. Kaçar, Realizations of lossy and lossless capacitance multiplier using CFOAs. AEU-International Journal of Electronics and Communications. 127, 53444 (2020)

    Google Scholar 

  40. P.B. Petrović, Single VDTA-based lossless and lossy electronically tunable positive and negative grounded capacitance multipliers. Circuits Systems Signal Process. 41(12), 6581–6614 (2022)

    Article  Google Scholar 

  41. J. Pimpol, O. Channumsin, W. Tangsrirat, Floating Series RC Impedance Simulator Using Single FB-VDBA. 8th International Electrical Engineering Congress (iEECON), pp. 1–4. IEEE, 2020

  42. T. Pukkalanun, P. Moonmuang, W. Tangsrirat, Grounded series/parallel RL/RC immittance simulations with a single VDTA. 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 1–4. IEEE, 2022

  43. K.L. Pushkar, D.R. Bhaskar, D. Prasad, Voltage-mode new universal biquad filter configuration using a single VDIBA. Circuits Systems Signal Process. 33, 275–285 (2014)

    Article  Google Scholar 

  44. N. Raj, V.K. Verma, R.K. Ranjan, Electronically tunable flux-controlled resistorless memristor emulator.". IEEE Canadian J. Electr. Comput. Eng. 45(3), 311–317 (2022)

    Article  Google Scholar 

  45. K. Rohilla, K.L. Pushkar, R. Kumar, Resistor-less capacitor-controlled single VDIBA-based third-order quadrature sinusoidal oscillator. IETE J. Res. (2022). https://doi.org/10.1080/03772063.2022.2131639

    Article  Google Scholar 

  46. N. Roongmuanpha, S. Unhavanich, W. Tangsrirat, Active Simulation of Electronically Tunable Grounded Lossless Inductor Using Voltage Differencing Inverting Buffered Amplifiers. International Conference on Engineering, Applied Sciences, and Technology (ICEAST), pp. 1–4. IEEE, 2018

  47. R. Senani, D. R. Bhaskar, V. K. Singh, A. K. Singh, Gyrators, Simulated Inductors and Related Immittances: Realizations and Applications. Institution of Engineering and Technology, 2020.

  48. R. Senani, Floating immitance realisation-Nullor approach. Electron. Lett. 24, 403–405 (1988)

    Article  ADS  Google Scholar 

  49. R. Senani, New tunable synthetic floating inductors. Electron. Lett. 16(10), 382–383 (1980)

    Article  ADS  Google Scholar 

  50. R. Senani, New single-capacitor simulation of floating inductors Electrocomponent Sci. Technol. 10(7), 12 (1982)

    Google Scholar 

  51. R. Senani, Network transformations for incorporating nonideal simulated immittances in the design of active filters and oscillators, IEE Proc., Pt. G., Vol. 134, no. 4, pp. 158–66, Aug. 1987.

  52. R. K. Sharma, R. Senani, D. R. Bhaskar, A. K. Singh, S. S. Gupta, Electronically-controllable floating inductor using OMA with enhanced input dynamic range, in Proc. Int. Conf. Electri. Electron. Eng. (ELECO), Bursa, Turkey, 2009, pp. II-63–II-66

  53. M. Shrivastava, P. Kumar, A. Raj, and D. R. Bhaskar, Single current follower differential input transconductance amplifier based grounded lossy capacitance multiplier with large multiplication factor. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields: e3139.

  54. A.K. Singh, P. Kumar, R. Senani, New grounded immittance simulators employing a single CFCC. J. Eng. 2017(8), 435–447 (2017)

    Article  Google Scholar 

  55. S. Siripongdee, W. Jaikla, Electronically controllable grounded inductance simulators using single commercially available IC: LT1228. AEU-Int. J. Electron. Commun. 76, 1–10 (2017)

    Article  Google Scholar 

  56. R. Sotner, N. Herencsar, J. Jerabek, A. Kartci, J. Koton, T. Dostal, Pseudo-differential filter design using novel adjustable floating inductance simulator with electronically controllable current conveyors. Elektron. Elektrotech. 23(2), 31–35 (2017)

    Article  Google Scholar 

  57. R. Sotner, J. Jerabek, N. Herencsar, Voltage differencing buffered/inverted amplifiers and their applications for signal generation. Radioengineering 22(2), 490–504 (2013)

    Google Scholar 

  58. R. Srivastava, O.K. Gupta, A. Kumar, D. Singh, Low-voltage bulk-driven self-cascode transistor based voltage differencing inverting buffered amplifier and its application as universal filter. Microelectron. J.. J. 102, 104828 (2020)

    Article  Google Scholar 

  59. W. Tangsrirat, W. Surakampontorn, Tunable active grounded lossless and lossy inductance simulators with single grounded capacitor using VDBAs. Scientia Iranica 29(2), 739–748 (2022)

    Google Scholar 

  60. W. Tangsrirat, Actively floating lossy inductance simulators using voltage differencing buffered amplifiers. IETE J. Res. 65(4), 446–459 (2019)

    Article  Google Scholar 

  61. W. Tangsrirat, Synthetic grounded lossy inductance simulators using single VDIBA. IETE J. Res. 63(1), 134–141 (2017)

    Article  Google Scholar 

  62. W Tangsrirat (2017). Resistorless tunable capacitance multiplier using single voltage differencing inverting buffered amplifier. Rev. Roum. Des Sci. Techn.-Électrotechn. et Énerg, 62(1), pp. 72–75,

  63. T. Unuk, E. Yuce, DVCC+ based immittance function simulators including grounded passive elements only. Journal of Circuits, Systems and Computers 30(15), 2150278 (2021)

    Article  Google Scholar 

  64. H.Y. Wang, C.-T. Lee, Systematic synthesis of RL and CD immittances using single CCIII. Int. J. Electron. 87(3), 293–301 (2000)

    Article  Google Scholar 

  65. H.Y. Wang, C.T. Lee, Realisation of RL and CD immittances using single FTFN. Electron. Lett. 34(6), 502–503 (1998)

    Article  ADS  Google Scholar 

  66. Z. Wang, 2-MOSFET trans-resistor with extremely low distortion for output reaching supply voltages. Electron. Lett. 26(13), 951–952 (1990)

    Article  ADS  Google Scholar 

  67. A. Yeşil, F. Kaçar, New DXCCII-based grounded series inductance simulator topologies. IU-J. Electr. Electron. Eng. 14(2), 1785–1789 (2015)

    Google Scholar 

  68. E. Yuce, Comment on “realization of series and parallel RL and CD impedances using single differential voltage current conveyor.” Analog Integr. Circ. Sig. ProcessIntegr. Circ. Sig. Process 49, 91–92 (2006)

    Article  Google Scholar 

  69. E. Yuce, Novel lossless and lossy grounded inductor simulators consisting of a canonical number of components. Analog Integr. Circ. Sig. ProcessIntegr. Circ. Sig. Process 59, 77–82 (2009)

    Article  Google Scholar 

  70. E. Yuce, New low component count floating inductor simulators consisting of a single DDCC. Analog Integr. Circ. Sig. ProcessIntegr. Circ. Sig. Process 58(1), 61–66 (2009)

    Article  Google Scholar 

  71. E. Yuce, S. Tokat, H. Alpaslan, Grounded capacitor based new floating inductor simulators and a stability test. Turk. J. Elec. Eng. & Comp. Sci. 23, 2138–2149 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The author wishes to thank all the anonymous reviewers for their constructive comments and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajishek Raj.

Ethics declarations

Conflict of interest

The authors have no competing interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, A. Grounded and Floating Series-Type Lossy Capacitance and Inductance Simulators Using VDIBA(s). Circuits Syst Signal Process (2024). https://doi.org/10.1007/s00034-024-02628-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00034-024-02628-y

Keywords

Navigation