Skip to main content
Log in

Particle-Velocity Coarray Augmentation for Direction Finding with Acoustic Vector Sensors

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, the problem of passive direction finding is addressed using an acoustic vector sensor array (AVS), which may be deployed either in free space or near a reflecting boundary. Building upon the \(4 \times 1\) vector field measured by an AVS, the particle-velocity coarray augmentation (PVCA) is proposed to admit the underdetermined direction finding using the spatial difference coarray derived from the vectorization of the array covariance matrix. Unlike the widely used spatial coarray Toeplitz recovery technique, the PVCA is applicable to arbitrary array geometries and imposes no reduction of the spatial difference coarray aperture. For the array located at or near a reflecting boundary, the PVCA allows resolving up to 13 sources, while for the array located in free space, the PVCA can identify 9 sources at most. By applying to the systematically designed nonuniform arrays, such as coprime arrays and nested arrays, the PVCA can be coupled with the spatial smoothing technique to get the number of resolvable sources multiplied. Finally, the effectiveness of the PVCA is verified by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. H.-E. de Bree, J. Wind, P. de Theije, Detection, localization and tracking of aircraft using acoustic vector sensors, in International Noise 2011 Proceedings, Osaka, pp. 1112–1116 (2011)

  2. H.-E. De Bree, J. W. Wind, The acoustic vector sensor: A versatile battlefield acoustics sensor. Ground/Air Multisensor Interoperability, Integr., Netw. Persistent ISR II, Int. Soc. Optics Photon. 80470C (2011)

  3. L.M. Brekhovskikh, Waves in Layered Media, 2nd edn. (Academic, New York, 1980)

    MATH  Google Scholar 

  4. Y.-M. Chen, On spatial smoothing for two-dimensional direction-of arrival estimation of coherent signals. IEEE Trans. Signal Process. 45(7), 1689–1696 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Chen, J. Zhao, Wideband MVDR beamforming for acoustic vector sensor linear array. IEE Proc. Radar Sonar Navig. 151(3), 158–162 (2004)

    Article  Google Scholar 

  6. C.W. Clark, M.L. Tasker, M. Ferguson, J.P. Hartley, I. Fletcher, A. Whitehead, A.A. Duff, J.F. Appelbee, C. Pickton, J. Spink, C. MacDuff-Duncan, S.J. Knight, A.H. Walls, A. Onder, J. Urbanus, I. Buchanan, in Proceedings of SPE/UKOOA European Environment Conference Aberdeen, U.K., Monitoring the occurrence of large whales off north and west Scotland using passive acoustic arrays (1997), pp. 23–29

  7. N.R. Goodman, Statistical analysis based on a certain multivariate complex Gaussian distribution (An introduction). Ann. Math. Stat. 34(1), 152–177 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Han, A. Nehorai, Nested vector-sensor array processing via tensor modeling. IEEE Trans. Signal Process. 62(10), 2542–2553 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Hawkes, A. Nehorai, Effects of sensor placement on acoustic vector-sensor array performance. IEEE J. Oceanic Eng. 24(1), 33–40 (1999)

    Article  Google Scholar 

  10. M. Hawkes, A. Nehorai, Battlefield target localization using acoustic vector sensors and distributed processing, in Proceedings of Meeting IRIS Specialty Group Battlefield Acoustics Seismics, Laurel (1999), pp. 111–128

  11. M. Hawkes, A. Nehorai, Acoustic vector-sensor processing in the presence of a reflecting boundary. IEEE Trans. Signal Process. 48(11), 2981–2993 (2000)

    Article  Google Scholar 

  12. J. He, L. Li, T. Shu, Sparse nested arrays with spatially spread square acoustic vector sensors for high-accuracy underdetermined direction finding. IEEE Trans. Aerosp. Electron. Syst. 57(4), 2324–2336 (2021)

    Article  Google Scholar 

  13. J. He, L. Li, T. Shu, Sparse nested arrays with spatially spread orthogonal dipoles: high accuracy passive direction finding with less mutual coupling. IEEE Trans. Aerosp. Electron. 57(4), 2337–2345 (2021)

    Article  Google Scholar 

  14. J. He, Z. Liu, Two-dimensional direction finding of acoustic sources by a vector sensor array using the propagator method. Signal Process. 88(10), 2492–2499 (2008)

    Article  MATH  Google Scholar 

  15. J. He, Z. Liu, Efficient underwater two-dimensional coherent source localization with linear vector hydrophone array. Signal Process. 89, 1715–1722 (2009)

    Article  MATH  Google Scholar 

  16. J. He, Z. Zhang, C. Gu, T. Shu, W. Yu, Cumulant-based 2-D direction estimation using an acoustic vector sensor array. IEEE Trans. Aerosp. Electron. Syst. 56(2), 956–971 (2020)

    Article  Google Scholar 

  17. C. Khatri, C.R. Rao, Solutions to some functional equations and their applications to characterization of probability distributions. J. Stat. A. 30(2), 167–180 (1968)

    MathSciNet  MATH  Google Scholar 

  18. J. Li, M. Hodgson, Development and evaluation of equivalent-fluid approximations for sea-bottom sound reflection. Canad. Acoust. 26, 3–11 (1998)

    Google Scholar 

  19. L. Liang, Y. Shi, Y. Shi, Z. Bai, W. He, Two-dimensional DOA estimation method of acoustic vector sensor array based on sparse recovery. Digital Signal Process. 120, 103294 (2022)

    Article  Google Scholar 

  20. C.L. Liu, P.P. Vaidyanathan, Remarks on the spatial smoothing step in coarray MUSIC. IEEE Signal Process. Lett. 22(9), 1438–1442 (2015)

    Article  Google Scholar 

  21. K.W. Lo, Flight parameter estimation using instantaneous frequency and direction of arrival measurements from a single acoustic sensor node. J. Acoust. Soc. Am. 141(3), 1332–1348 (2017)

    Article  Google Scholar 

  22. A. Moffet, Minimum-redundancy linear arrays. IEEE Trans. Antennas Propag. 16(2), 172–175 (1968)

    Article  Google Scholar 

  23. A. Nehorai, E. Paldi, Acoustic vector-sensor array processing. IEEE Trans. Signal Process. 42(9), 2481–2491 (1994)

    Article  Google Scholar 

  24. P. Pal, P.P. Vaidyanathan, Nested array: a novel approach to array processing with enhanced degrees of freedom. IEEE Trans. Signal Process. 58(8), 4167–4181 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Palanisamy, N. Kalyanasundaram, P.M. Swetha, Two dimensional DOA estimation of coherent signals using acoustic vector sensor array. Signal Process. 92(1), 19–28 (2012)

    Article  Google Scholar 

  26. S.U. Pillai, Y. Bar-Ness, F. Haber, A new approach to array geometry for improved spatial spectrum estimation. Proc. IEEE 73(10), 1522–1524 (1985)

    Article  Google Scholar 

  27. S. Qin, Y. Zhang, M. Amin, Generalized coprime array configurations for direction-of-arrival estimation. IEEE Trans. Signal Process. 63(6), 1377–1390 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Roy, T. Kailath, ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37(7), 984-995 (1989)

  29. R.O. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    Article  Google Scholar 

  30. S.G. Shi, Y. Li, Z.R. Zhu, J. Shi, Real-valued robust DOA estimation method for uniform circular acoustic vector sensor arrays based on worstcase performance optimization. Appl. Acoust. 148, 495–502 (2019)

    Article  Google Scholar 

  31. A. Song, A. Abdi, M. Badiey, P. Hursky, Experimental demonstration of underwater acoustic communication by vector sensors. IEEE J. Oceanic Eng. 36(3), 454–461 (2011)

    Article  Google Scholar 

  32. J. Tao, W. Chang, W. Cui, Vector field smoothing for DOA estimation of coherent underwater acoustic signals in presence of a reflecting boundary. IEEE Sensors J. 7(8), 1152–1158 (2007)

    Article  Google Scholar 

  33. P.P. Vaidyanathan, P. Pal, Sparse sensing with co-prime samplers and arrays. IEEE Trans. Signal Process. 59(2), 573–586 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Weiss, Blind Direction-of-Arrival estimation in acoustic vector-sensor arrays via tensor decomposition and Kullback-leibler divergence covariance fitting. IEEE Trans. Signal Process. 69, 531–545 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. K.T. Wong, M.D. Zoltowski, Extended-aperture underwater acoustic multi-source azimuth/elevation direction-finding using uniformly but sparsely spaced vector hydrophones. IEEE J. Ocean. Eng. 22(4), 659–672 (1997)

    Article  Google Scholar 

  36. K.T. Wong, M.D. Zoltowski, Root-MUSIC-based azimuth-elevation angle-of-arrival estimation with uniformly spaced but arbitrarily oriented velocity hydrophones. IEEE Trans. Signal Process. 47(12), 3250–260 (1999)

    Article  Google Scholar 

  37. Y. Xu, Z. Liu, Frequency-azimuth-elevation determination with a single acoustic vector-sensor involved in a reflecting boundary. Circuits Syst. Signal Process. 26, 875–895 (2007)

    Article  MATH  Google Scholar 

  38. D.R. Yntema, W. Druyvesteyn, M. Elwenspoek, A four particle velocity sensor device. J. Acoust. Soc. Am. 119(2), 943–951 (2006)

    Article  Google Scholar 

  39. C. Zhou, Y. Gu, X. Fan, Z. Shi, G. Mao, Y.D. Zhang, Direction-of-arrival estimation for coprime array via virtual array interpolation. IEEE Trans. Signal Process. 66(22), 5956–5971 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. M.D. Zoltowski, S.D. Silverstein, C.P. Mathews, Beamspace Root-MUSIC for minimum redundancy linear arrays. IEEE Trans. Signal Process. 41(7), 2502–2507 (1993)

    Article  MATH  Google Scholar 

  41. N. Zou, A. Nehorai, Circular acoustic vector-sensor array for mode beamforming. IEEE Trans. Signal Process. 57(8), 3041–3052 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin He.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled, “Particle–Velocity Coarray Augmentation For Direction Finding with Acoustic Vector Sensors.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China under grant 61771302.

Appendices

Appendix A: Derivation of the Matrix \({{\varvec{P}}}\) in (7)

Define a \(PQ \times PQ\) matrix \({{\varvec{U}}}_{P \times Q}\) as

$$\begin{aligned} {{\varvec{U}}}_{P \times Q} \triangleq \sum _{p = 1}^P \sum _{q = 1}^Q {{\varvec{E}}}_{pq} \otimes {{\varvec{F}}}_{qp}, \end{aligned}$$
(22)

where \({{\varvec{E}}}_{pq}\) is a \(P \times Q\) matrix with all zeros except a 1 at the (pq)th position and \({{\varvec{F}}}_{qp}\) is a \(Q \times P\) matrix with all zeros except a 1 at the (qp)th position.

Using the following three matrix prosperities given in [17]

$$\begin{aligned} {{\varvec{A}}} \odot ({{\varvec{B}}} \odot {{\varvec{C}}})= & {} ({{\varvec{A}}} \odot {{\varvec{B}}}) \odot {{\varvec{C}}}, \end{aligned}$$
(23)
$$\begin{aligned} {{\varvec{U}}}_{P \times Q} ({{\varvec{A}}} \odot {{\varvec{B}}})= & {} ({{\varvec{B}}} \odot {{\varvec{A}}}), \end{aligned}$$
(24)
$$\begin{aligned} ({{\varvec{A}}} \otimes {{\varvec{B}}})({{\varvec{C}}} \odot {{\varvec{D}}})= & {} {{\varvec{A}}} {{\varvec{C}}}\odot {{\varvec{B}}} {{\varvec{D}}}, \end{aligned}$$
(25)

we have

$$\begin{aligned}{} & {} ({{\varvec{U}}}_{4 \times L} \otimes {{\varvec{I}}}_{4L} ) [({{\varvec{Q}}} \odot {{\varvec{C}}})^*\odot ({{\varvec{Q}}} \odot {{\varvec{C}}})] \nonumber \\ {}{} & {} \quad = {{\varvec{U}}}_{4 \times L} ({{\varvec{Q}}}^*\odot {{\varvec{C}}}^*) \odot {{\varvec{I}}}_{4L} ({{\varvec{Q}}} \odot {{\varvec{C}}}) \nonumber \\ {}{} & {} \quad = ({{\varvec{C}}}^*\odot {{\varvec{Q}}}^*) \odot ({{\varvec{Q}}} \odot {{\varvec{C}}}) \end{aligned}$$
(26)

and

$$\begin{aligned}{} & {} ({{\varvec{I}}}_4 \otimes {{\varvec{U}}}_{4 \times L^2}) ({{\varvec{C}}}^*\odot {{\varvec{Q}}}^*) \odot ({{\varvec{Q}}} \odot {{\varvec{C}}}) \nonumber \\{} & {} \quad = {{\varvec{I}}}_4 {{\varvec{C}}}^*\odot {{\varvec{U}}}_{4 \times L^2}[ ({{\varvec{Q}}}^*\odot {{\varvec{Q}}}) \odot {{\varvec{C}}}] \nonumber \\ {}{} & {} \quad = ({{\varvec{C}}}^*\odot {{\varvec{C}}}) \odot ({{\varvec{Q}}}^*\odot {{\varvec{Q}}}). \end{aligned}$$
(27)

Let \({{\varvec{P}}} = ({{\varvec{I}}}_4 \otimes {{\varvec{U}}}_{4 \times L^2}) ({{\varvec{U}}}_{4 \times L} \otimes {{\varvec{I}}}_{4L})\). The relationship (7) is established.

Appendix B: Proof of Theorem 1

The rank of \(\bar{{\varvec{C}}}\) depends on the linear dependence of the particle-velocity coarray steering vector \(\bar{{\varvec{c}}}(\theta , \phi ) \triangleq {{\varvec{c}}}^*(\theta , \phi ) \otimes {{\varvec{c}}}(\theta , \phi )\). In fact, the ith element of \(\bar{{\varvec{c}}}(\theta , \phi )\), denoted by \({\bar{c}}_i\), is the product of the mth element of \({{\varvec{c}}}^*(\theta , \phi )\) and the nth element of \({{\varvec{c}}}(\theta , \phi )\), where the relationship between mn, and i is

$$\begin{aligned} m = \left\lceil i/4 \right\rceil , \ n = i - 4 \left\lfloor (i - \textrm{eps})/4 \right\rfloor , \end{aligned}$$
(28)

where “eps” represents the floating-point relative accuracy, which is used to ensure the values of n are within 1 to 4. With the foregoing notations, the 16 elements of \(\bar{{\varvec{c}}}\), listed in Table 4, can be computed, where \(\rho \triangleq \mathcal{R}(\theta ) e^{-j \vartheta }\).

Table 4 Entries in the \(16 \times 1\) Vector \({{\varvec{c}}}^*\otimes {{\varvec{c}}}\)

From Table 4, we have the following two cases:

  1. (i)

    For \(\mathcal{R}(\theta ) \ne 0, \pm 1, \forall \theta \), \({\bar{c}}_5 = {\bar{c}}_2\), \({\bar{c}}_9 = {\bar{c}}_3\), and \({\bar{c}}_{10} = {\bar{c}}_7\). Therefore, the 5th, 9th, and 10th rows of \({\bar{{\varvec{C}}}}\) are linearly dependent on the remaining 13 rows. For sources of arbitrary but different directions, the rank of \({\bar{{\varvec{C}}}}\) is up to 13 at most.

  2. (ii)

    For \(\mathcal{R}(\theta ) = 0, \forall \theta \), \({\bar{c}}_5 = {\bar{c}}_2\), \({\bar{c}}_9 = {\bar{c}}_3\), \({\bar{c}}_{10} = {\bar{c}}_7\), \({\bar{c}}_{13} = {\bar{c}}_4\), \({\bar{c}}_{14} = {\bar{c}}_8\), \({\bar{c}}_{15} = {\bar{c}}_{12}\), and \({\bar{c}}_{16} = {\bar{c}}_{1} - {\bar{c}}_{6} - {\bar{c}}_{11}\). Therefore, the 5th, 9th, 10th, and 13-16th rows of \({\bar{{\varvec{C}}}}\) are linearly dependent on the remaining 9 rows. For sources of arbitrary but different directions, the rank of \({\bar{{\varvec{C}}}}\) is up to 9 at most.

Based on the above (i) and (ii), the results in Theorem 1 are established.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, T., He, J. & Truong, TK. Particle-Velocity Coarray Augmentation for Direction Finding with Acoustic Vector Sensors. Circuits Syst Signal Process 42, 3072–3093 (2023). https://doi.org/10.1007/s00034-022-02269-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02269-z

Keywords

Navigation