Skip to main content
Log in

Joint ECG–EMG–EEG signal compression and reconstruction with incremental multimodal autoencoder approach

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Through wearable technology, several chronic diseases are diagnosed by long-term monitoring of vital signs specifically ECG, EMG, EEG biosignals. Such prolonged monitoring and transmitting these multiple recordings may decline the battery power of wireless wearable device. This work aims at preserving the battery power of wireless wearables by jointly compressing ECG–EMG–EEG signals before sending to the receiver. This work proposes multimodal deep denoising convolutional autoencoder architecture for joint compression (encoding) and reconstruction (decoding) of ECG–EMG–EEG biosignals. In addition, the system may encounter new data stream in future with varying range of statistics in this real-time scenario; hence, it is required to remodel the system. But these wearables are memory constrained, so the model’s learned optimized parameters should not increase in size when it is remodeled or updated. The incremental learning addresses this issue by reusing the previously learned weights as initial weight for retraining the model for new dataset and avoids random weight initialization thereby maintaining the space and time complexity. The experimental result shows that the proposed model achieves better compression efficiency of 99.8% with highest reconstruction Quality Score of 156, 254 & 149.4 for ECG, EMG & EEG signals, respectively, than state-of-the-art methods, and it is observed that the computation time is low for joint compression than compressing each signal individually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Manuscript has no associated data.

References

  1. Z. Abeer, A. M. Al-Marridi, A. Erbad, Convolutional autoencoder approach for EEG compression and reconstruction in m-health systems. In: IEEE 14th International Wireless Communications and Mobile Computing Conference (IWCMC) (2018). https://doi.org/10.1109/IWCMC.2018.8450511

  2. M. M. Andrade, J. C. Carmo, F. A. O. Nascimento, J. F. Camapum, I. dos Santos, L. R. Mochizuki, A. F. Rocha, Evaluation of techniques for the study of electromyographic signals. In: Proc. 28th IEEE Int. Conf. Eng. Med. Biol. Soc. (EMBS) 1335–1338 (2006)

  3. R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, C. E. Elger, Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 64, 1–8 (2001). https://doi.org/10.1103/physreve.64.061907

  4. S. Banerjee, G.K. Singh, Quality guaranteed ECG signal compression using tunable-Q wavelet transform and Möbius transform-based AFD. IEEE Trans. Instrum. Measur. 70, 4008211–4008221 (2021). https://doi.org/10.1109/TIM.2021.3122119

    Article  Google Scholar 

  5. P. Bera, R. Gupta, J. Saha, Preserving abnormal beat morphology in long-term ECG recording: an efficient hybrid compression approach. IEEE Trans Instrum Measur 69, 2084–2092 (2019). https://doi.org/10.1109/TIM.2019.2922054

    Article  Google Scholar 

  6. B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Müller, G. Curio, The non-invasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjects. Neuroimage 37, 539–550 (2007)

    Article  Google Scholar 

  7. L. Brechet, L. Marie-Françoise, C. Doncarli, D. Farina, Compression of biomedical signals with mother wavelet optimization and best-basis wavelet packet selection. IEEE Trans. Biomed. Eng. 54, 2186–2192 (2007). https://doi.org/10.1109/TBME.2007.896596

    Article  Google Scholar 

  8. A. Burguera, Fast QRS detection and ECG compression based on signal structural analysis. IEEE J. Biomed. Health Inform. 23, 123–131 (2019). https://doi.org/10.1109/JBHI.2018.2792404

    Article  Google Scholar 

  9. Y. Cao, H. Zhang, C. Yong-Bae, H. Wang, S. Xiao, Hybrid deep learning model assisted data compression and classification for efficient data delivery in mobile health applications. IEEE Access 8, 94757–94766 (2020). https://doi.org/10.1109/ACCESS.2020.2995442

    Article  Google Scholar 

  10. C. Chou, C. En-Jui, L. Huai-Ting, W. An-Yeu, Low-complexity privacy—preserving compressive analysis using subspace-based dictionary for ECG telemonitoring system. IEEE Trans. Biomed. Circ. Syst. 12, 801–811 (2018). https://doi.org/10.1109/TBCAS.2018.2828031

    Article  Google Scholar 

  11. G. Cisotto, A.V. Guglielmi, L. Badia, A. Zanella, Joint compression of EEG and EMG signals for wireless biometrics. IEEE Glob. Commun. Conf. (GLOBECOM) (2018). https://doi.org/10.1109/GLOCOM.2018.8647543

    Article  Google Scholar 

  12. D.A. Clevert, T. Unterthiner, S. Hochreiter, Fast accurate deep network learning by exponential linear units (ELUs). https://arxiv.org/abs/1511.07289 (2015)

  13. D. Cogan, J. Birjandtalab, M. Nourani, Multi-biosignal analysis for epileptic seizure monitoring. Int. J. Neural Syst. 26, 1–18 (2016). https://doi.org/10.1142/s0129065716500313

    Article  Google Scholar 

  14. D. Craven, B. McGinley, L. Kilmartin, M. Glavin, E. Jones, Compressed sensing for bioelectric signals: a review. IEEE J. Biomed. Health Inform. 19, 529–540 (2015). https://doi.org/10.1109/JBHI.2014.2327194

    Article  Google Scholar 

  15. E. Dasan, I. Panneerselvam, A novel dimensionality reduction approach for ECG signal via convolutional denoising autoencoder with LSTM. Elsevier Biomed. Signal Process. Control 63, 1–11 (2021). https://doi.org/10.1016/j.bspc.2020.102225

    Article  Google Scholar 

  16. B. Deepa, K. Ramesh, Preprocessed CHB-MIT scalp EEG database. IEEE Dataport (2021). https://doi.org/10.21227/awcw-mn88

  17. S. Devuyst, The dreams subjects database. http://www.tcts.fpms.ac.be/devuyst/Databases/DatabaseSubjects/ (2004)

  18. K. Dinashi, A. Ameri, M.A. Akhaee, K. Englehart, E. Scheme, Compression of EMG signals using deep convolutional autoencoders. IEEE J. Biomed. Health Inform. (2022). https://doi.org/10.1109/JBHI.2022.3142034

    Article  Google Scholar 

  19. G. Dornhege, B. Blankertz, G. Curio, K.R. Müller, Boosting bitrates in noninvasive EEG single-trial classications by feature combination and multiclass paradigms. IEEE Trans. Biomed. Eng. 51, 993–1002 (2004). https://doi.org/10.1109/TBME.2004.827088

    Article  Google Scholar 

  20. E.B.L. Filho, E.A.B. da Silva, M.B. de Carvalho, On EMG signal compression with recurrent patterns. IEEE Trans. Biomed. Eng 55, 1920–1923 (2008). https://doi.org/10.1109/TBME.2008.919729

    Article  Google Scholar 

  21. M. Fira, L. Goras, On compressed sensing for EEG signals—validation with P300 speller paradigm. Int. Conf. Commun. (COMM) (2016). https://doi.org/10.1109/ICComm.2016.7528296

    Article  Google Scholar 

  22. A. Gogna, A. Majumdar, R. Ward, Semi-supervised stacked label consistent autoencoder for reconstruction and analysis of biomedical signals. IEEE Trans. Biomed. Eng. 64, 2196–2205 (2017). https://doi.org/10.1109/TBME.2016.2631620

    Article  Google Scholar 

  23. A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P.C. Ivanov, R. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation [Online]. 101(23), e215–e220. https://doi.org/10.13026/C24S3D

  24. M. Hooshmand, D. Zordan, T. Melodia, M. Rossi, SURF: subject-adaptive unsupervised ECG signal compression for wearable fitness monitors. IEEE Access 5, 19517–19535 (2017). https://doi.org/10.1109/ACCESS.2017.2749758

    Article  Google Scholar 

  25. F. Hu, Y. Xiao, Q. Hao, Congestion-aware loss-resilient bio-monitoring sensor networking for mobile health applications. IEEE J. Select. Areas Commun. 27, 450–465 (2009). https://doi.org/10.1109/JSAC.2009.090509

    Article  Google Scholar 

  26. N. Iyengar, C.-K. Peng, R. Morin, A.L. Goldberger, L.A. Lipsitz, Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am. J. Physiol. 271, 1078–1084 (1996). https://doi.org/10.13026/C2RG61

    Article  Google Scholar 

  27. L. Jin, Y. Zhang, X.-L. Wang, W.-J. Zhang, Y.-H. Liu, Z. Jiang, Postictal apnea as an important mechanism for SUDEP: a near-SUDEP with continuous EEG-ECG-EMG recording. ELSEVIER J. Clin. Neurosci. 43, 130–132 (2017). https://doi.org/10.1016/j.jocn.2017.04.035

    Article  Google Scholar 

  28. B. Khalid, M. Majid, I.F. Nizami, S.M. Anwar, M. Alnowami, EEG compression using motion compensated temporal filtering and wavelet Based subband coding. IEEE Access 8, 102502–102511 (2020). https://doi.org/10.1109/ACCESS.2020.2999091

    Article  Google Scholar 

  29. G. Klösch, B. Kemp, T. Penzel, A. Schlögl, P. Rappelsberger, E. Trenker, G. Gruber, J. Zeitlhofer, B. Saletu, W.M. Herrmann, S.L. Himanen, D. Kunz, M.J. Barbanoj, J. Röschke, A. Värri, G. Dorffner, The SIESTA project polygraphic and clinical database. IEEE Eng. Med. Biol. Mag. 20, 51–57 (2001). https://doi.org/10.1109/51.932725

    Article  Google Scholar 

  30. P. Kovács, S. Fridli, F. Schipp, Generalized rational variable projection with application in ECG compression. IEEE Trans. Signal Process. 68, 478–492 (2020). https://doi.org/10.1109/TSP.2019.2961234

    Article  Google Scholar 

  31. C. Li, W. Tao, J. Cheng, Y. Liu, X. Chen, Robust multichannel EEG compressed sensing in the presence of mixed noise. IEEE Sens. J. 19, 10574–10583 (2019). https://doi.org/10.1109/JSEN.2019.2930546

    Article  Google Scholar 

  32. D.H. Liu, S.A. Imtiaz, Studying the effects of compression in EEG-based wearable sleep monitoring systems. IEEE Access 8, 168486–168501 (2020). https://doi.org/10.1109/ACCESS.2020.3023915

    Article  Google Scholar 

  33. H. Lin, S. Yuan-Yao, P. Ai-Chun, C. Chun-Ting, Virtual local-hub: a service platform on the edge of networks for wearable devices. IEEE Network 32, 114–121 (2018). https://doi.org/10.1109/MNET.2018.1700367

    Article  Google Scholar 

  34. T.Y. Liu, K.J. Lin, H.C. Wu, ECG data encryption then compression using singular value decomposition. IEEE J. Biomed. Health Inform. 22, 707–713 (2017). https://doi.org/10.1109/JBHI.2017.2698498

    Article  Google Scholar 

  35. M. Ma, C. Sun, X. Chen, Deep coupling autoencoder for fault diagnosis with multisensory data. IEEE Trans. Ind. Inform. 14, 1137–1145 (2018). https://doi.org/10.1109/TII.2018.2793246

    Article  Google Scholar 

  36. M. Mangia, L. Prono, A. Marchioni, F. Pareschi, R. Rovatti, G. Setti, Deep neural oracles for short-window optimized compressed sensing of biosignals. IEEE Trans. Biomed. Circ. Syst. 14, 545–557 (2020). https://doi.org/10.1109/TBCAS.2020.2982824

    Article  Google Scholar 

  37. R. Martínez, Mónica, S. Higuita, L. Yanet, Jordanic, Mislav, Marateb, H. Reza, Merletti, Roberto, Villanueva, M.A. Mañanas, A high-density surface EMG dataset of upper-limb muscles during isometric contractions in healthy humans: Part1/3. figshare. Dataset (2020). https://doi.org/10.6084/m9.figshare.11860572.v1

  38. D. Mitra, H. Zanddizari, S. Rajan, Investigation of Kronecker-based recovery of compressed ECG signal. IEEE Trans. Instrum. Measur. 69, 3642–3653 (2020). https://doi.org/10.1109/TIM.2019.2936776

    Article  Google Scholar 

  39. A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P.C. Ivanov, R. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation [Online]. 101(23), e215–e220. https://doi.org/10.13026/C2F305

  40. S.K. Mukhopadhyay, M. Omair Ahmad, M.N.S. Swamy, SVD and ASCII character encoding-based compression of multiple biosignals for remote healthcare systems. IEEE Trans. Biomed. Circ. Syst. 12, 137–150 (2018). https://doi.org/10.1109/TBCAS.2017.2760298

    Article  Google Scholar 

  41. A.J. Oyobé-Okassa, D.A. Assoumou, P. Elé, Compression of EMG signals by super imposing methods: case of WPT and DCT. Int. J. Eng. Technol. 8, 1335–1343 (2016)

    Google Scholar 

  42. A.J. Oyob-Okassa, J.M. Ngono, P. Ele, Compression of the EMG signals by Walsh-Hadamard transform associated with the predictive coding DPCM. Int. J. Syst. Signal Control Eng. Appl. 12, 1–7 (2019). https://doi.org/10.36478/ijssceapp.2019.1.7

    Article  Google Scholar 

  43. R. Paradiso, G. Loriga, N. Taccini, A wearable health care system based on knitted integrated sensors. IEEE Trans. Inf. Technol. Biomed. 9, 337–344 (2005). https://doi.org/10.1109/TITB.2005.854512

    Article  Google Scholar 

  44. T. Penzel, G.B. Moody, R.G. Mark, A.L. Goldberger, J.H. Peter, The Apnea-ECG database. Comput. Cardiol. 27, 255–258 (2000)

    Google Scholar 

  45. J. Qian, P. Tiwari, S.P. Gochhayat, H.M. Pandey, A noble double dictionary based ECG compression technique for IoTH. IEEE Internet Things J. 7, 10160–10170 (2020). https://doi.org/10.1109/JIOT.2020.2974678

    Article  Google Scholar 

  46. A. Ravelomanantsoa, A. Rouane, H. Rabah, N. Ferveur, L. Collet, Design and implementation of a compressed sensing encoder: application to EMG and ECG wireless biosensors. Circ. Syst. Signal Process. 36, 2875–2892 (2017). https://doi.org/10.1007/s00034-016-0444-y

    Article  Google Scholar 

  47. A.B. Said, A. Mohamed, T. Elfouly, K. Harras, Z. Jane-Wang, Multimodal deep learning approach for joint EEG-EMG data compression and classification. IEEE Wireless Commun. Networking Conf. (WCNC) (2017). https://doi.org/10.1109/WCNC.2017.7925709

    Article  Google Scholar 

  48. L. Shaw, D. Rahman, A. Routray, Highly efficient compression algorithms for multichannel EEG. IEEE Trans. Neural Syst. Rehab. Eng. 26, 957–968 (2018). https://doi.org/10.1109/TNSRE.2018.2826559

    Article  Google Scholar 

  49. J. Singh, R.K. Sharma, Making sleep study instrumentation more unobtrusive. IEEE Instrum. Meas. Mag. 21, 50–53 (2018). https://doi.org/10.1109/MIM.2018.8278812

    Article  Google Scholar 

  50. N. Sriraam, C. Eswaran, Performance evaluation of neural network and linear predictors for near-lossless compression of EEG signals. IEEE Trans. Inf Technol. Biomed. 12, 87–93 (2008). https://doi.org/10.1109/TITB.2007.899497

    Article  Google Scholar 

  51. N. Sriraam, Quality-on-demand compression of EEG signals for telemedicine applications using neural network predictors. HINDAWI Int. J. Telemed. Appl. (2011). https://doi.org/10.1155/2011/860549

    Article  Google Scholar 

  52. C. Tan, L. Zhang, W. Hau-tieng, A Novel Blaschke unwinding adaptive Fourier decomposition based signal compression algorithm with application on ECG signals. IEEE J. Biomed. Health Inform. 23, 672–682 (2017). https://doi.org/10.1109/JBHI.2018.2817192

    Article  Google Scholar 

  53. D.D. Testa, M. Rossi, Lightweight lossy compression of biometric patterns via denoising autoencoders. IEEE Signal Process. Lett. 22, 2304–2308 (2015). https://doi.org/10.1109/LSP.2015.2476667

    Article  Google Scholar 

  54. K. Takabayashi, H. Karvonen, T. Pas, H. Tanaka, C. Sugimoto, R. Kohno, Performance evaluation of a QoS-aware error control scheme for multiple-WBAN environment. IEEJ Trans. Electr. Electron. Eng. 12, S146–S157 (2017). https://doi.org/10.1002/tee.22445

    Article  Google Scholar 

  55. M.H. Trabuco, M.V.C. Costa, B. Macchiavello, F.A.O. de Nascimento, S-EMG signal compression in one-dimensional and two-dimensional approaches. IEEE J. Biomed. Health Inform. 22, 1104–1113 (2018). https://doi.org/10.1109/JBHI.2017.2765922

    Article  Google Scholar 

  56. Y. Taigman, M. Yang, M. Ranzato, L. Wolf, DeepFace: closing the gap to human-level performance in face verification. IEEE Conf. Comput. Vis. Pattern Recogn. (2014). https://doi.org/10.1109/CVPR.2014.220

    Article  Google Scholar 

  57. F. Wang, Q. Ma, W. Liu, S. Chang, H. Wang, J. He, Q. Huang, A novel ECG signal compression method using spindle convolutional auto-encoder. Elsevier Comput. Methods Programs Biomed. 175, 139–150 (2019). https://doi.org/10.1016/j.cmpb.2019.03.019

    Article  Google Scholar 

  58. F. Wu, K. Yang, Z. Yang, Compressed acquisition and denoising recovery of EMGdi signal in WSNs and IoT. IEEE Trans. Ind. Inform. 14, 2210–2219 (2017). https://doi.org/10.1109/TII.2017.2759185

    Article  Google Scholar 

  59. N.Y. Wang, S.W. Hsiao-Lan, W. Tao-Wei, F. Szu-Wei, L. Xugan, W. Hsin-Min, Y. Tsao, Improving the intelligibility of speech for simulated electric and acoustic stimulation using fully convolutional neural networks. IEEE Trans. Neural Syst. Rehabilit. Eng. 29, 184–195 (2020). https://doi.org/10.1109/TNSRE.2020.3042655

    Article  Google Scholar 

  60. P. Wagner, N. Strodthoff, R. Bousseljot, W. Samek, T. Schaeffter, PTB-XL, a large publicly available electrocardiography dataset (version 1.0.1). Physionet (2020). https://doi.org/10.13026/x4td-x982

  61. O. Yildirim, U. Rajendra Acharya, R. San Tan, An efficient compression of ECG signals using deep convolutional autoencoders. Article Cogn. Syst. Res. 52, 198–211 (2018). https://doi.org/10.1016/j.cogsys.2018.07.004

    Article  Google Scholar 

  62. H. Zhao, H. Wang, Y. Fu, F. Wu, X. Li, Memory efficient class-incremental learning for image classification. IEEE Trans. Neural Networks Learn. Syst. (Early Access) (2021). https://doi.org/10.1109/TNNLS.2021.3072041

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the insightful comments of the editor and the anonymous reviewers that has helped us to improve the overall quality of our manuscript.

Funding

No funding source available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelin Dasan.

Ethics declarations

Conflict of interest

No known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasan, E., Gnanaraj, R. Joint ECG–EMG–EEG signal compression and reconstruction with incremental multimodal autoencoder approach. Circuits Syst Signal Process 41, 6152–6181 (2022). https://doi.org/10.1007/s00034-022-02071-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02071-x

Keywords

Navigation