Skip to main content
Log in

Strategy Set and Payoff Optimization of a Type of Networked Evolutionary Games

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we consider the strategy set optimization and payoff optimization for a class of networked evolutionary games (NEGs) with “myopic best response adjustment” by using the semi-tensor product (STP) method, and present a number of new results. Firstly, the dominated strategies are defined, based on which an algorithm for removing dominated strategies is formulated for a given NEG. Secondly, using STP method, the dynamics of the NEG after removing the dominated strategies is converted into an algebraic form. Finally, the payoff optimization problem is considered by adding control players to the game and state feedback controls are designed to steer the game from an initial profile to the optimal profile which can maximize the overall payoff of the whole game. An illustrative example is studied to support our new results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. R. Abolpour, M. Raji, P. Moradi, Dynamic output feedback stabilization of deterministic finite automata via the semi-tensor product of matrices approach. Control Theory Technol. 19(2), 170–182 (2021). https://doi.org/10.1007/s11768-020-00026-8

    Article  MathSciNet  MATH  Google Scholar 

  2. M.L. Bushnell, V.D. Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits (Springer Science & Business Media, Cham, 2004)

    Google Scholar 

  3. D. Cheng, F. He, H. Qi, T. Xu, Modeling, analysis and control of networked evolutionary games. IEEE Trans. Autom. Control 60(9), 2402–2415 (2015). https://doi.org/10.1109/TAC.2015.2404471

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Cheng, H. Qi, Z. Li, Analysis and control of Boolean networks: a semi-tensor product approach (Springer, London, 2011)

    Book  Google Scholar 

  5. D. Cheng, H. Qi, Z. Li, J. Liu, Stability and stabilization of Boolean networks. Int. J. Robust Nonlinear Control 21(2), 134–156 (2011). https://doi.org/10.1002/rnc.1581

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Deng, S. Fu, P. Zhu, State feedback control design to avoid players going bankrupt. Asian J. Control 21(6), 2551–2558 (2019). https://doi.org/10.1002/asjc.2126

    Article  MathSciNet  MATH  Google Scholar 

  7. X. Ding, H. Li, Optimal control of random evolutionary Boolean games. Int. J. Control 94(1), 144–152 (2021). https://doi.org/10.1080/00207179.2019.1585957

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Doebeli, C. Hauert, Models of cooperation based on the prisoner’s dilemma and the snowdrift game. Ecol. Lett. 8(7), 748–766 (2005). https://doi.org/10.1111/j.1461-0248.2005.00773.x

    Article  Google Scholar 

  9. E. Fehr, S. Gchter, Cooperation and punishment in public goods experiments. Am. Econ. Rev. 90(4), 980–994 (2000). https://doi.org/10.1257/aer.90.4.980

    Article  Google Scholar 

  10. J. Feng, J. Yao, P. Cui, Singular Boolean networks: semi-tensor product approach. Sci. China Inf. Sci. 56(11), 1–14 (2013). https://doi.org/10.1007/s11432-012-4666-8

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Friedman, On economic application of evolutionary game theory. J. Evol. Econ. 8(1), 15–43 (1998). https://doi.org/10.1007/s001910050054

    Article  Google Scholar 

  12. S. Fu, H. Li, G. Zhao, Modelling and strategy optimisation for a kind of networked evolutionary games with memories under the bankruptcy mechanism. Int. J. Control 91(5), 1104–1117 (2018). https://doi.org/10.1080/00207179.2017.1306113

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Fu, G. Zhao, H. Li, Model and control for a class of networked evolutionary games with finite memories and time-varying networks. Circuits Syst. Signal Process. 37(7), 3093–3114 (2018). https://doi.org/10.1007/s00034-017-0707-2

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Guo, Y. Wang, H. Li, Stable degree analysis for strategy profiles of evolutionary networked games. Sci. China Inf. Sci. 59(5), 1–12 (2016). https://doi.org/10.1007/s11432-015-5376-9

    Article  Google Scholar 

  15. C. Hauert, M. Doebeli, Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature 428(6983), 643–646 (2004). https://doi.org/10.1038/nature02360

    Article  Google Scholar 

  16. D. Helbing, A. Szolnoki, M. Perc, G. Szabo, Punish, but not too hard: how costly punishment spreads in the spatial public goods game. New J. Phys. 12(8), 83005 (2010). https://doi.org/10.1088/1367-2630/12/8/083005

    Article  Google Scholar 

  17. J.O. Ledyard, Public Goods: A Survey of Experimental Research (Princeton Univeristy Press, Princeton, 2020)

    Google Scholar 

  18. S. Le, Y. Wu, Y. Guo, C.D. Vecchio, Game Theoretic Approach for a service function chain routing in NFV with coupled constraints. IEEE Trans. Circuits Syst. II Expr. Briefs (2021). https://doi.org/10.1109/TCSII.2021.3070025

    Article  Google Scholar 

  19. S. Le, Y. Wu, M. Toyoda, A congestion game framework for service chain composition in NFV with function benefit. Inf. Sci. 514, 512–522 (2020). https://doi.org/10.1016/j.ins.2019.11.015

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Li, X. Yong, Entanglement guarantees emergence of cooperation in quantum prisoner’s dilemma games on networks. Sci. Rep. 4(1), 1–7 (2014). https://doi.org/10.1038/srep06286

    Article  Google Scholar 

  21. C. Li, F. He, H. Yao, Decompositions of finite games: from weighted inner product to standard inner product. Asian J. Control 21(6), 2644–2650 (2019). https://doi.org/10.1002/asjc.2233

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Li, X. Ding, A control Lyapunov function approach to feedback stabilization of logical control networks. SIAM J. Control Optim. 57(2), 810–831 (2019). https://doi.org/10.1137/18M1170443

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Li, S. Wang, B. Niu, State feedback stabilization of large-scale logical control networks via network aggregation. IEEE Trans. Autom. Control 66(12), 6033–6040 (2021). https://doi.org/10.1109/TAC.2021.3057139

    Article  MathSciNet  MATH  Google Scholar 

  24. X.S. Liu, J.Y. Guan, Z.X. Wu, Effects of limited interactions between individuals on cooperation in spatial evolutionary prisoner’s dilemma game. Chaos Solitons Fractals 56, 106–112 (2013). https://doi.org/10.1016/j.chaos.2013.07.015

    Article  MATH  Google Scholar 

  25. Y. Liu, L. Wang, J. Lu, J. Cao, Sampled-data stabilization of probabilistic Boolean control networks. Syst. Control Lett. 124, 106–111 (2019). https://doi.org/10.1016/j.sysconle.2018.12.012

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. Li, H. Li, X. Ding, Set stability of switched delayed logical networks with application to finite-field consensus. Automatica 113, 108768 (2020). https://doi.org/10.1016/j.automatica.2019.108768

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Lu, H. Li, Y. Liu, F. Li, Survey on semi-tensor product method with its applications in logical networks and other finite-valued systems. IET Control Theory Appl. 11(13), 2040–2047 (2017). https://doi.org/10.1049/iet-cta.2016.1659

    Article  MathSciNet  Google Scholar 

  28. L.L. Jiang, M. Perc, A. Szolnoki, If cooperation is likely punish mildly: insights from economic experiments based on the snowdrift game. PLOS ONE 8(5), e64677 (2013). https://doi.org/10.1371/journal.pone.0064677

  29. M. Meng, B. Li, J. Feng, Controllability and Observability of Singular Boolean Control Networks. Circuits Syst. Signal Process. 34(4), 1233–1248 (2015). https://doi.org/10.1007/s00034-014-9900-8

  30. P. Michiardi, R. Molva, Core: a collaborative reputation mechanism to enforce node cooperation in mobile ad hoc networks, in Advanced Communications and Multimedia Security. (Springer, Boston, 2002), pp. 107–121

    Chapter  Google Scholar 

  31. M.A. Nowak, K. Sigmund, Evolutionary dynamics of biological games. Science 303(5659), 793–799 (2004). https://doi.org/10.1126/science.1093411

    Article  Google Scholar 

  32. E. Rasmusen, Games and information: an introduction to game theory. Blackwell, Oxford (1989). https://doi.org/10.1007/BF02834992

  33. F.C. Santos, M.D. Santos, J.M. Pacheco, Social diversity promotes the emergence of cooperation in public goods games. Nature 454(7201), 213–216 (2008). https://doi.org/10.1038/nature06940

    Article  Google Scholar 

  34. A. Szolnoki, M. Perc, Reward and cooperation in the spatial public goods game. Europhys. Lett. 92(3), 38003 (2010). https://doi.org/10.1209/0295-5075/92/38003

    Article  Google Scholar 

  35. A. Szolnoki, Z. Wang, M. Perc, Wisdom of groups promotes cooperation in evolutionary social dilemmas. Sci. Rep. 2(1), 1–6 (2012). https://doi.org/10.1038/srep00576

    Article  Google Scholar 

  36. H. Tembine, E. Altman, R. El-Azouzi, Y. Hayel, Evolutionary games in wireless networks. IEEE Trans. Syst. Man Cybern. Part B Cybern. 40(3), 634–646 (2010). https://doi.org/10.1109/TSMCB.2009.2034631

    Article  Google Scholar 

  37. J. Wang, R. De Leone, S. Fu, J. Xia, L. Qiao, Event-triggered control design for networked evolutionary games with time invariant delay in strategies. Int. J. Syst. Sci. 52(3), 493–504 (2021). https://doi.org/10.1080/00207721.2020.1831646

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Wang, W. Liu, S. Fu, J. Xia, On robust set stability and set stabilization of probabilistic Boolean control networks. Appl. Math. Comput. 422, 126992 (2022). https://doi.org/10.1016/j.amc.2022.126992

    Article  MathSciNet  MATH  Google Scholar 

  39. L. Wang, Y. Liu, Z. Wu, F.E. Alsaadi, Strategy optimization for static games based on STP method. Appl. Math. Comput. 316, 390–399 (2018). https://doi.org/10.1016/j.amc.2017.08.023

    Article  MathSciNet  MATH  Google Scholar 

  40. Z. Wang, A. Szolnoki, M. Perc, Optimal interdependence between networks for the evolution of cooperation. Sci. Rep. 3(1), 1–7 (2013). https://doi.org/10.1038/srep02470

    Article  Google Scholar 

  41. Y. Yang, Y. Liu, J. Lou, Z. Wang, Observability of switched Boolean control networks using algebraic forms. Discret. Contin. Dyn. Syst.-Ser. S 14(4), 1519–1533 (2021). https://doi.org/10.3934/dcdss.2020373

  42. G. Zhao, H. Li, W. Sun, F.E. Alsaadi, Modelling and strategy consensus for a class of networked evolutionary games. Int. J. Syst. Sci. 49(12), 2548–2557 (2018). https://doi.org/10.1080/00207721.2018.1506063

    Article  MathSciNet  MATH  Google Scholar 

  43. G. Zhao, Y. Wang, Formulation and optimization control of a class of networked evolutionary games with switched topologies. Nonlinear Anal. Hybrid Syst. 22, 98–107 (2016). https://doi.org/10.1016/j.nahs.2016.03.009

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation (NNSF) of China under Grants 62103176 and the Natural Science Foundation of Shandong Province ZR2019BF023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanan Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Pan, Y., Fu, S. et al. Strategy Set and Payoff Optimization of a Type of Networked Evolutionary Games. Circuits Syst Signal Process 41, 4413–4437 (2022). https://doi.org/10.1007/s00034-022-02000-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02000-y

Keywords

Navigation