Skip to main content
Log in

New Classes of Regular Symmetric Fractals

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The paper introduces new fractal families many of which approach optimal information dimension for annular and checkerboard structures and include the Sierpinski carpet and the Menger sponge as special cases. The complementary mapping is defined, and a notation to represent the families is proposed. The new classes represent an enhanced set that goes beyond the recently published results on optimal information dimensionality and they can be expected to have applications in natural and engineered self-similar systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The paper has no associated data.

References

  1. K. Bertoldi, V. Vitelli, J. Christensen et al., Flexible Mech. Metamater. Nat. Rev. Mater. 2, 17066 (2017)

    Google Scholar 

  2. A. Bunde, S. Havlin, Fractals in science (Springer, Heidelberg, 2013)

    MATH  Google Scholar 

  3. T. Burns, R. Rajan, A mathematical approach to correlating objective spectro-temporal features of non-linguistic sounds with their subjective perceptions in humans. Front. Neurosci. 13, 794 (2019)

    Article  Google Scholar 

  4. C. Coulais, C. Kettenis, M. van Hecke, A characteristic length scale causes anomalous size effects and boundary programmability in mechanical metamaterials. Nature Phys 14, 40–44 (2018)

    Article  Google Scholar 

  5. G. Edgar, Measure, topology, and fractal geometry (Springer-Verlag, New York, 2008)

    Book  Google Scholar 

  6. G. Failla, M. Zingales, Advanced materials modelling via fractional calculus: challenges and perspectives. Philos. Trans. A Math. Phys. Eng. Sci. 378(2172), 20200050 (2020)

    Google Scholar 

  7. K.J. Falconer, Fractal geometry: mathematical foundations and applications (Wiley, Hoboken, 2003)

    Book  Google Scholar 

  8. T. Iwaniec, G. Martin, Geometric function theory and non-linear analysis (Oxford Mathematical Monographs, Oxford, 2001)

    MATH  Google Scholar 

  9. L. Jun, M. Ostoja-Starzewski, Edges of Saturn’s rings are fractal. Springerplus 4, 158 (2015)

    Article  Google Scholar 

  10. S. Kak, Power series models of self-similarity in social networks. Inf. Sci. 376, 31–38 (2017)

    Article  Google Scholar 

  11. S. Kak, Fractals with optimum information dimension. Circuit Syst. Signal Process 40(11), 5733–5743 (2021)

    Article  Google Scholar 

  12. S. Kak, The base-e representation of numbers and the power law. Circuits Syst. Signal Process. 40, 490–500 (2021)

    Article  Google Scholar 

  13. S. Kak, Information, representation, and structure. International Conference on Recent Trends in Mathematics and Its Applications to Graphs, Networks and Petri Nets, New Delhi, India (2020). https://doi.org/10.36227/techrxiv.12722549.v1

  14. S. Kak, The intrinsic dimensionality of data. Circuits Syst. Signal Process. 40, 2599–2607 (2021)

    Article  Google Scholar 

  15. S. Kak, Information theory and dimensionality of space. Sci. Rep. 10, 20733 (2020)

    Article  Google Scholar 

  16. S. Kak, Asymptotic freedom in noninteger spaces. Sci. Rep. 11, 1–5 (2021)

    Article  Google Scholar 

  17. S. Kak, Information-theoretic view of the variation of the gravitational constant. TechRxiv (2021). https://doi.org/10.36227/techrxiv.14527104.v1

  18. B.B. Mandelbrot, The fractal geometry of nature (W. H. Freeman, New York, 1983)

    Book  Google Scholar 

  19. S.J. Miller (ed.), Benford’s law: theory and applications (Princeton University Press, Princeton, 2015)

    MATH  Google Scholar 

  20. S. Semmes, Some novel types of fractal geometry (Oxford Mathematical Monographs, Oxford, 2001)

    MATH  Google Scholar 

  21. F.H. Stillinger, Axiomatic basis for spaces with noninteger dimensions. J. Math. Phys. 18, 1224–1234 (1977)

    Article  MathSciNet  Google Scholar 

  22. V.E. Tarasov, Vector calculus in non-integer dimensional space and its applications to fractal media. Commun. Nonlinear Sci. Numer. Simul. 20, 360–374 (2015)

    Article  MathSciNet  Google Scholar 

  23. T. Vicsek, Fluctuations and scaling in biology (Oxford University Press, Oxford, 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Kak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kak, S. New Classes of Regular Symmetric Fractals. Circuits Syst Signal Process 41, 4149–4159 (2022). https://doi.org/10.1007/s00034-022-01966-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-01966-z

Keywords

Navigation